
Design Document: caBench-To-Bedside

Design Document

Document Change History
Version Number Date Contributor Description

V1.0 March 6, 2007 Washington
University/Persistent

Systems

Draft document

V1.0 July 29, 2007 Washington
University/Persistent

Systems

Reviewed and updated for
beta release

V2.0 July 01, 2008 Washington
University/Persistent

Systems

Reviewed and updated for
release

This is a U.S. Government work. July 21, 2008

CABENCH-TO-BEDSIDE V2.0

Design Document: caBench-To-Bedside

Model caBIG™ Open Source Software License
v.2

Release Date: January 7, 2008

Copyright Notice. Copyright 2008 School of Medicine, Washington University in St.
Louis (“caBIG™ Participant”). ca Bench-to-Bedside was created with NCI funding and is
part of the caBIG™ initiative. The software subject to this notice and license includes
both human readable source code form and machine readable, binary, object code form
(the “caBIG™ Software”).
This caBIG™ Software License (the “License”) is between caBIG™ Participant and You.
“You (or “Your”) shall mean a person or an entity, and all other entities that control, are
controlled by, or are under common control with the entity. “Control” for purposes of this
definition means (i) the direct or indirect power to cause the direction or management of
such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.

License. Provided that You agree to the conditions described below, caBIG™
Participant grants You a non-exclusive, worldwide, perpetual, fully-paid-up, no-charge,
irrevocable, transferable and royalty-free right and license in its rights in the caBIG™ Software,
including any copyright or patent rights therein, to (i) use, install, disclose, access, operate,
execute, reproduce, copy, modify, translate, market, publicly display, publicly perform, and
prepare derivative works of the caBIG™ Software in any manner and for any purpose, and to have
or permit others to do so; (ii) make, have made, use, practice, sell, and offer for sale, import,
and/or otherwise dispose of caBIG™ Software (or portions thereof); (iii) distribute and have
distributed to and by third parties the caBIG™ Software and any modifications and derivative
works thereof; and (iv) sublicense the foregoing rights set out in (i), (ii) and (iii) to third parties,
including the right to license such rights to further third parties. For sake of clarity, and not by
way of limitation, caBIG™ Participant shall have no right of accounting or right of payment from
You or Your sublicensees for the rights granted under this License. This License is granted at no
charge to You. Your downloading, copying, modifying, displaying, distributing or use of caBIG™
Software constitutes acceptance of all of the terms and conditions of this Agreement. If you do
not agree to such terms and conditions, you have no right to download, copy, modify, display,
distribute or use the caBIG™ Software.

1. Your redistributions of the source code for the caBIG™ Software must retain the
above copyright notice, this list of conditions and the disclaimer and limitation of
liability of Article 6 below. Your redistributions in object code form must
reproduce the above copyright notice, this list of conditions and the disclaimer of
Article 6 in the documentation and/or other materials provided with the
distribution, if any.

2. Your end-user documentation included with the redistribution, if any, must
include the following acknowledgment: “This product includes software
developed by School of Medicine, Washington University in St. Louis.” If You do
not include such end-user documentation, You shall include this
acknowledgment in the caBIG™ Software itself, wherever such third-party
acknowledgments normally appear.

3. You may not use the names “School of Medicine, Washington University in St.
Louis”, “The National Cancer Institute”, “NCI”, “Cancer Bioinformatics Grid” or
“caBIG™” to endorse or promote products derived from this caBIG™ Software.
This License does not authorize You to use any trademarks, service marks, trade

Design Document: caBench-To-Bedside

names, logos or product names of either caBIG™ Participant, NCI or caBIG™,
except as required to comply with the terms of this License.

4. For sake of clarity, and not by way of limitation, You may incorporate this
caBIG™ Software into Your proprietary programs and into any third party
proprietary programs. However, if You incorporate the caBIG™ Software into
third party proprietary programs, You agree that You are solely responsible for
obtaining any permission from such third parties required to incorporate the
caBIG™ Software into such third party proprietary programs and for informing
Your sublicensees, including without limitation Your end-users, of their obligation
to secure any required permissions from such third parties before incorporating
the caBIG™ Software into such third party proprietary software programs. In the
event that You fail to obtain such permissions, You agree to indemnify caBIG™
Participant for any claims against caBIG™ Participant by such third parties,
except to the extent prohibited by law, resulting from Your failure to obtain such
permissions.

5. For sake of clarity, and not by way of limitation, You may add Your own copyright
statement to Your modifications and to the derivative works, and You may
provide additional or different license terms and conditions in Your sublicenses of
modifications of the caBIG™ Software, or any derivative works of the caBIG™
Software as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

6. THIS caBIG™ SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES (INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS
FOR A PARTICULAR PURPOSE) ARE DISCLAIMED. IN NO EVENT SHALL
THE SCHOOL OF MEDICINE, WASHINGTON UNIVERSITY IN ST. LOUIS OR
ITS AFFILIATES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS caBIG™
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Design Document: caBench-To-Bedside

Index
CHAPTER 1 INTRODUCTION.. 1

CHAPTER 2 HIGH LEVEL ARCHITECTURE... 2

OVERVIEW .. 2

WHY CAB2B USES CLIENT-SERVER BASED ARCHITECTURE?... 3

CLIENT-SERVER COMMUNICATION... 3

CHAPTER 3 METADATA REPOSITORY.. 8

OVERVIEW .. 8

WHAT IS DYNAMIC EXTENSIONS?... 8

STORING UML MODEL .. 9

PATH GENERATION MODULE ... 11

CATEGORY.. 13

METADATA CACHE ... 18

CHAPTER 4 METADATA SEARCH ... 19

OVERVIEW .. 19

BACKEND IMPLEMENTATION .. 19

USER INTERFACE.. 21

CHAPTER 5 QUERY OBJECT... 23

OVERVIEW .. 23

CLASS DIAGRAM .. 25

CHAPTER 6 QUERY ENGINE.. 26

OVERVIEW .. 26

CLASS DIAGRAM .. 26

SEQUENCE DIAGRAM ... 28

FLOWCHART... 29

LAZY INITIALIZATION .. 29

CHAPTER 7 QUERYING CAARRAY USING CAB2B... 33

SCOPE ... 33

SUPPORTING CAARRAY IN CAB2B... 33

QUERY RESULT TRANSFORMERS ... 35

CHAPTER 8 QUERYING SECURE DATA SERVICES.. 39

OVERVIEW .. 39

APIS TO USE ... 39

IMPLEMENTATION.. 40

CHAPTER 9 CUSTOM UI COMPONENTS .. 43

OVERVIEW .. 43

LIST OF CUSTOMIZED COMPONENTS.. 43

LAZY TABLE MODEL.. 44

Design Document: caBench-To-Bedside

CHAPTER 10 DYNAMIC UI GENERATION FOR ADD/EDIT LIMITS 47

OVERVIEW .. 47

DESIGN ... 47

CHAPTER 11 VISUAL QUERY INTERFACE OR DIAGRAMMATIC (DAG) VIEW......... 52

OVERVIEW .. 52

USER INTERFACE DESIGN .. 53

QUERY BUILDING... 56

CHAPTER 12 PAGINATION SWING COMPONENT ... 57

OVERVIEW .. 57

DESIGN DETAILS .. 58

CHAPTER 13 SEARCH DATA WIZARD .. 65

OVERVIEW .. 65

CLASS DIAGRAM .. 65

SEQUENCE DIAGRAM... 67

CHAPTER 14 VIEW RESULTS .. 68

CHAPTER 15 RECORD CUSTOMIZATION.. 70

OVERVIEW .. 70

WHY CUSTOMIZE IRECORD?.. 70

STEPS IN CUSTOMIZING A RECORD .. 70

RESULT CONFIGURATION XML .. 71

IRECORD AND ITS EXTENSIONS .. 73

QUERY RESULT TRANSFORMERS ... 74

DATA LIST TRANSFORMERS.. 76

RESULT RENDERERS ... 80

CHAPTER 16 DATA LIST .. 82

OVERVIEW .. 82

VIEW DATA LIST... 82

DATA LIST OPERATIONS.. 83

CHAPTER 17 EXPERIMENT .. 86

OVERVIEW .. 86

EXPERIMENT DATA MODEL... 86

SAVING AN EXPERIMENT ... 87

OPENING AN EXPERIMENT .. 87

CUSTOM DATA CATEGORY .. 89

CHAPTER 18 CHARTING.. 91

OVERVIEW .. 91

CLASSES INVOLVED.. 91

SEQUENCE DIAGRAM ... 92

CHAPTER 19 SPREADSHEET COMPONENT .. 93

OVERVIEW .. 93

Design Document: caBench-To-Bedside

CLASS DIAGRAM .. 96

CHAPTER 20 ANALYTICAL SERVICES INVOKER .. 97

OVERVIEW .. 97

ENTITY TO ANALYTICAL SERVICE MAPPING XML... 97

CLASSES INVOLVED.. 98

CHAPTER 21 APPENDIX ... 99

DYNAMIC EXTENSION AND MDR ... 99

Design Document: caBench-To-Bedside

List of Figures

Figure 1 caB2B Client-Server Architecture ... 2

Figure 2 Example of client server communication via an EJB lookup... 5

Figure 3 Class diagram showing usage of EJB with PathFinderBean example 6

Figure 4 Classes involved in storing UML model to MDR... 10

Figure 5 Class diagram of Path Generation Module ... 12

Figure 6 diagram for classes in category .. 14

Figure 7 Sequence diagram saving a category... 15

Figure 8 Category XML structure .. 16

Figure 9 Example of Category XML file... 16

Figure 10 Classes involved in category creation... 17

Figure 11 Classes in Metadata cache module .. 18

Figure 12 Classes- Metadata Search backend ... 20

Figure 13 Classes- Metadata Search user interface.. 22

Figure 14 Interfaces that compose the query object ... 25

Figure 15 Interfaces and classes that compose the query engine.. 26

Figure 16 Sequence diagram to show how a query is executed and results are returned 28

Figure 17 Detailed steps within the QueryExecutor .. 29

Figure 18 Sequence diagram - Lazy Initialization ... 32

Figure 19 IRecord and its caArray extensions .. 34

Figure 20 Query Result Transformers... 35

Figure 21 caArray Query Result transformer .. 37

Figure 22 caB2B Login dialog ... 40

Figure 23 Class Diagram for User Authentication ... 41

Figure 24 Sequence diagram of User Authentication.. 42

Figure 25 Classes Involved in Lazy Table Model component... 45

Figure 26 Flow of events in displaying BDQ ... 46

Figure 27 Snippet of DTD used for dynamic UI configuration XML .. 48

Figure 28 Detailed steps for generating UI component for an attribute .. 50

Figure 29 Class diagram for classes participating in dynamic UI generation 51

Figure 30 Basic workflow in the DAG.. 53

Figure 31 Class diagram for classes in the DAG view .. 54

Figure 32 Class diagram for classes related to ambiguity resolver... 55

Figure 33 Client query builder interface for client side query building... 56

Figure 34 Snapshot of a Pagination component ... 59

Figure 35 Classes involved in Pagination component .. 62

Figure 36 Pagination Sequence Diagram ... 63

Figure 37 Class diagram for the Search dialog wizard... 65

Figure 38 sequence diagram for navigation from step1 to step2 in the wizard............................. 67

Figure 39 Classes involved in displaying query results... 68

Figure 40 Order of instantiation of panels for view results .. 69

Figure 41 Sample ResultConfiguration.xml... 71

Figure 42 IRecord and its extensions .. 73

Figure 43 Query Result Transformers... 75

Figure 44 Query Result transformers .. 76

Figure 45 Data list savers and factory... 77

Figure 46 Data list retrievers ... 78

Figure 47 Caarray extensions for data list operations... 79

Figure 48 Result Panel Model ... 80

Figure 49 Flow of events while displaying results ... 81

Figure 50 Classes involved in displaying data-list... 82

Figure 51 Sequence diagram for retrieving records of a data list ... 84

Figure 52 Sequence diagram for saving records of a data list .. 85

Figure 53 Experiment data model ... 86

Figure 54 Flow of evens for saving experiment... 87

Design Document: caBench-To-Bedside

Figure 55 Experiment UI model... 88

Figure 56 Flow of event for Open Experiment... 89

Figure 57 flow for saving the custom data category.. 90

Figure 58 Classes Involved in Charting... 91

Figure 59 Flow of events happening during chart generation ... 92

Figure 60 Classes Involved in Spreadsheet component ... 96

Figure 61 Sample EntityToAnalyticalServiceMapping.xml.. 97

Figure 627 Metadata Repository backbone .. 99

Figure 63 Dynamic extension basic metadata .. 100

Figure 64 Inheritance Metadata... 102

Figure 65 Attribute Data Elements .. 103

Design Document: caBench-To-Bedside Chapter 1–Introduction

 Page 1

Chapter 1 Introduction
This document explains the design of the components and modules present in
caBench-To-Bedside (caB2B) project. It provides details of different components
that are being developed as a part of caB2B application and may be are shared
across other applications.

Design Document: caBench-To-Bedside Chapter 2–High Level Architecture

 Page 2

Chapter 2 High Level Architecture

Overview
This section describes the overall architecture and high level design of the
caB2B.

The caB2B application is a highly user interaction-rich application that will allow

the user to perform the following:

• Search and query different grid enabled data services to acquire data
sets of interest

• Save data sets and create an ‘experiment’ in order to analyze and
visualize this information

• Perform different analyses using different grid enabled analytical services

• Visualize analysis results using a rich collection of windows

• Execute workflow jobs, time-taking queries, or analyses asynchronously

• Share experimental results amongst multiple caB2B users

The caB2B application has a client-server based architecture.

The caB2B client is a desktop application (implemented in Java Swing) which
provides the user a graphical user interface to search for data sets of interest,
create experiments, and view different analysis results.

The caB2B server performs backend activities associated with user interactions.
The server caches static data such as classes and attributes from domain
models and their associations as well as query execution results. Following
diagram shows overall architecture of caB2B. We will see the components shown
in this diagram in later sections.

Figure 1 caB2B Client-Server Architecture

Design Document: caBench-To-Bedside Chapter 2–High Level Architecture

 Page 3

Why caB2B uses client-Server based architecture?

The rationale for selecting a client-server based architecture is as follows:

1. A centralized caB2B server avoids the need to install a database per
client.

2. Server stores common data required by all the caB2B clients which
includes

3. The parsed UML model classes and attributes and their associations
obtained by downloading models registered in the caDSR.

4. All possible paths between pairs of UML classes.

5. Disk space consumption is reduced on the client as common data is
stored on the server.

6. Common data which needs to be refreshed such as by downloading
UML models are fetched by the caB2B server periodically from some
source external to caB2B. Thus each client does not need to acquire
such updates as this activity is centralized with clients connected to
sever to receive the latest updates.

7. The caB2B server caches static data such as all the classes from the
domain models and their associated paths resulting in significant
performance gain.

8. Asynchronous tasks such as performing analytical services, executing
complex queries and workflow management may be performed by the
caB2B sever allowing the caB2B client to be interactive. The user can
perform other tasks until the caB2B server completes its task and
returns results back to the client.

9. The user created experiments and query results are stored on the
server. Hence these results and experiments may be shared across
multiple users connected to the same caB2B server.

Client-Server Communication
Communication between the caB2B client and caB2B server is established
through RMI-IIOP i.e. "Remote Method Invocation over the Internet Inter-ORB
Protocol". Enterprise Java Beans (EJB) is a part of Java RMI-IIOP i.e. EJB is a
remote object and can be called from a different JVM. For more details on this,
please refer to the references section. The diagram in Fig. 2 shows the
architecture of the caB2B application that portrays how the client interacts with
the server using EJBs:

The reasons for using EJBs

• EJB enables an easy access to remote Java object (i.e. the stubs are
generated automatically by the container).

• It is very easy to call EJB from a standalone client. With an EJB, lookup
and creation logic are encapsulated in one place. The client code is not

Design Document: caBench-To-Bedside Chapter 2–High Level Architecture

 Page 4

aware of existence of EJB on some remote machine which is catering its
request. The client just calls remote methods as if they are being called
locally.

• An EJB's life cycle is managed by a J2EE-compliant server.

• EJB provides failover and load balancing i.e. one instance of a stateless
EJB can cater to more than one client simultaneously.

• An EJB can "publish" a Java API centrally as a RemoteInterface. Such an
API is referred to as a BusinessInterface in caB2B. The class providing
that API may be looked up and methods may be called from any remote
web application/standalone application.

• All EJBs are stateless session beans. For example, the EJB associated
with a query engine executes the user specified query and returns the
result.

• EJB is an open standard designed for vendor independence. The EJB
specification is developed and supported by all major open source and
commercial vendors in the enterprise Java community.

Dependency on EJB:

One important point to note here is that none of the business logic components
have any dependency on EJB. In fact, components like query interface, metadata
repository, metadata search and diagrammatic query view (DAG) are some of
the components that are reused across caTissue Suite and caB2B. Note that
caTissue Suite is a web-based application developed in Java Struts framework
whereas caB2B is a desktop application developed in Java Swing framework. In
spite of these fundamental differences, the reuse of most of the components
illustrates that the business logic components do not have any dependency on
the technology used to communicate between the client and the server (EJB in
this case).

Note: We are currently using EJB 2.1 and will be migrating to EJB 3 in the next
release of the caB2B application.

A Sample scenario
During the server startup, each EJB’s Home Object (i.e. factory for creating EJB
instances) is tied with a name in the JNDI (see references) tree on the same
server. When the client needs to call a method on the server, it does the
following:

1. It asks the EJB-locator to locate the appropriate EJB instance that
provides the required functionality in the form of a BusinessInterface.
Each locator instance is aware of which JNDI tree to refer to.

2. The Locator looks up the ‘Home Object’ of the corresponding EJB in the
JNDI tree and uses it to get the EJB instance.

3. The client calls the required method on this business interface.

Design Document: caBench-To-Bedside Chapter 2–High Level Architecture

 Page 5

The following sequence diagram describes a sample flow of EJB lookup
remotely. For example, finding all paths between two UML classes (entities) in
the application:

sd sequence

AddLimitPanel Locator JNDI tree

This is a remote call

locate(PathFinderHomeInterface)

lookup(PathFinderHomeInterface)

createBean(PathFinderHomeInterface)

PathFinderBusinessInterface

Figure 2 Example of client server communication via an EJB lookup

1. PathFinderBusinessInterface has a method getAllPossiblePaths(). It
accepts a source and a destination and then returns a list of possible
Paths.

2. An EJB, PathFinderBean implements this interface.

3. Its home interface is PathFinderHomeInterface. EJB’s remote interface
i.e. PathFinderRemoteInteface will extend PathFinderBusinessInterface.

4. The UI will call Locator to find the appropriate class for finding paths.
Locator will lookup the PathFinderHomeInterface from the JNDI tree
and will call create () on it which returns PathFinderBusinessInterface.
Locator will return that to the UI.

5. The UI calls getAllPossiblePaths() on PathFinderBusinessInterface to
get the list of Paths.

Design Document: caBench-To-Bedside Chapter 2–High Level Architecture

 Page 6

Classes involved in client-server communication

cd Logical Model

Locator

+ getInstance() : Locator

+ locate(String, Class) : BusinessInterface

+ clone() : Object

EJBObject

«interface»

PathFinderRemoteInterface

«interface»

PathFinderBusinessInterface

+ getAllPossiblePaths(EntityInterface, EntityInterface) : List<IPath>

+ getInterModelAssociations(Long) : List<IInterModelAssociation>

+ getCuratedPaths(EntityInterface, EntityInterface) : Set<ICuratedPath>

+ autoConnect(Set<EntityInterface>) : Set<ICuratedPath>

EJBHome

«interface»

PathFinderHomeInterface

+ create() : PathFinderRemoteInterface

Serializable

«interface»

BusinessInterface

SessionBean

AbstractStatelessSessionBean

+ ejbCreate() : void

+ ejbActivate() : void

+ ejbPassivate() : void

+ ejbRemove() : void

+ setSessionContext(SessionContext) : void

PathFinderBean

-locator

Figure 3 Class diagram showing usage of EJB with PathFinderBean example

Locator is responsible for all EJB lookups which is a singleton class. The caB2B
server to be contacted is configured in "cab2b.properties". Locator looks up the
Home Object of corresponding EJB in JNDI tree and uses it to get EJB instance.
It has the following method to lookup BusinessInterface locate(String ejbName,
Class homeClassForEJB).

AbstractStatelessSessionBean is an abstract class which represents a
Stateless Session Enterprise Java Bean. Each Stateless Session Bean must
extend this class if it not extending something else. This avoids the need of each
bean to implement methods from the javax.ejb.SessionBean class.

A home interface of an EJB defines the methods that allow a remote client to
create, find, and remove EJB objects. It extends javax.ejb.EJBHome.

An EJB's remote interface provides a remote client view of an EJB object. It
defines the business methods that may be called by a remote client. The remote
interface must extend the javax.ejb.EJBObject interface and corresponding
business interface.

Design Document: caBench-To-Bedside Chapter 2–High Level Architecture

 Page 7

BusinessInterface is a marker interface. All business interfaces must extend
this interface. Each EJB has a business interface which defines the enterprise
Bean specific business methods. This is to put a compile time check on the
methods exposed by EJB and methods implemented by EJB.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 8

Chapter 3 Metadata Repository

Overview
One of the basic requirements of caB2B is to be able to download a UML model
of any application from the caDSR and provide capabilities to build a query to
fetch data from that data source. In order to understand the design of caB2B it is
necessary to first understand the design and concept of the metadata repository
(MDR).

MDR stores the metadata for an UML model including its semantic annotations
like all CDEs including permissible values by decomposing the annotated UML
model obtained from caDSR.

It also contains all-to-all paths between every two classes. The caB2B server
pre-calculates the paths between all pairs of classes in the UML model and
stores them in the MDR. Classes from different applications are connected based
on their attribute’s CDE match. This involves matching the concept codes of the
classes and their attributes in order. Finally, given the amount of information it
stores, it is also possible to get all the paths between two classes across two
different UML models based on semantic interoperability.

The design of MDR is the basic foundation for caB2B backend. It enables the
caB2B query engine to provide the following functionalities:

• Metadata search

• Auto generation of user interface for entering predicates

• Automatic path resolution between two query predicates

• Category support

• Inter model queries based on semantic joins

caB2B uses Dynamic Extensions framework to store the UML model along with
its semantic annotations.

What is Dynamic Extensions?
Dynamic Extensions is a framework that allows creating business objects
dynamically in the form of entities and attributes. Following are the Dynamic
Extensions (DE) terms regularly referred in this document:

• Entity is a UML class.

• Attribute is a UML attribute.

• Association is relationship between any two entities.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 9

The metadata definition of entity and attribute includes:

• Model Properties (i.e. Data type, Precision etc.)

• Semantic properties (i.e. concept codes)

• Value domain specification (CDE public id, permissible values etc.)

For the detailed design of MDR, please refer to Section Overview and UML
metadata of the Dynamic Extensions design document.

Note: Since Dynamic Extensions design document is not formally released, those
two sections are appended to the Appendix of this document. Once the DE design
document is released, the appendix will be deleted.

Storing UML model
This activity involves following

• Parsing the domain model downloaded from caDSR using caGrid APIs

• Storing the metadata in DE along with inheritance relations.

• Finding out semantic relations of entities from current model to entities
already present in system (coming from different model)

The class diagram below shows all the classes involved in parsing domain
models, storing them in MDR, and finding and storing all possible non-redundant
paths.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 10

cd Path Building

InterModelConnection

+ getLeftAttributeId() : Long

+ getLeftEntityId() : Long

+ getRightAttributeId() : Long

+ getRightEntityId() : Long

PathBuilder

+ buildAndLoadAllModels(Connection) : void

+ loadSingleModel(Connection, String, String) : void

+ getNextPathId(Connection) : long

DomainModelParser

+ DomainModelParser(String)

+ getDomainModel() : DomainModel

+ getUmlAssociations() : UMLAssociation[]

+ getUmlClasses() : UMLClass[]

+ getParentVsChildrenMap() : Map<String,List<String>>

DomainModelProcessor

+ DomainModelProcessor(DomainModelParser, String)

+ getEntityIds() : List<Long>

+ getAdjacencyMatrix() : boolean[]

+ getReplicationNodes() : Map<Integer, Set<Integer>>

+ getEntityGroup() : EntityGroupInterface

PropertyLoader

+ getPropertiesFromFile(String) : Properties

+ getModelPath(String) : String

+ getServiceUrls(String) : String[]

+ getAllApplications() : String[]

+ getJndiUrl() : String

«use»

«call»

«use»

«call»

«instantiate»

Figure 4 Classes involved in storing UML model to MDR

• PathBuilder is a controller that calls different utility classes to populate
MDR by decomposing models defined in cab2b.properties file. It loads all
possible non-redundant paths for a given model to database.

• DomainModelProcessor stores the decomposed UML model to MDR. It
first transforms model into DE’s objects and processes inheritance
relationships in the model. Then DomainModelProcessor stores these
objects in MDR. It also generates an adjacency matrix and related
information required for path calculation. An instance of this class refers to
one domain model

• DomainModelParser converts a domain model XML file located at a given
path to caGrid metadata objects using the caGrid metadata utility
(gov.nih.nci.cagrid.common.Utils).

• PropertyLoader handles fetching properties from "cab2b.properties" file. It
provides methods

� To get all the models loaded in caB2B

� To get the file system path for the domain model XML of a given
application

• InterModelConnection represents one link present between two entities
from different models. This link is a pair of semantically equivalent (i.e.
reused CDEs) attributes of classes from different models.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 11

Path Generation Module

Steps and Classes Involved
This module calculates all possible ways to connect any two entities in the same
model. It consumes the adjacency matrix generated by DomainModelProcessor.
It converts that to a Graph object which is an adjacency list representation of a
(directed) graph. Each vertex of the graph is a Node. This module outputs set of
edu.wustl.cab2b.server.path.pathgen.Path which is an immutable representation
of a path, as a collection of the following:

• Source/From edu.wustl.cab2b.server.path.pathgen.Node

• Destination/To edu.wustl.cab2b.server.path.pathgen.Node

• A java.util.List of intermediate nodes needed to traverse from fromNode to
toNode.

At any point in time, GraphPathFinderCache contains all the paths between all
pairs of nodes that have been computed till then. When the algorithm terminates,
this cache will thus contain all the resultant paths. This cache helps avoid
recalculation of paths between a pair of nodes, and thus improves efficiency.
Figure below shows all the classes involved in this module.

PathReplicationUtil replicates paths of parent entity to its child. For example
suppose P1, C1, P2, C2 are classes. C1 is child of P1 and C2 is child of P2.
There is a bi-directional association present between P1 and P2. There is no
association between C1 and C2. Then system generates following paths along
with normal path between P1 and P2

1. Path between P1 and C2

2. Path between C1 and P2

3. Path between C1 and C2

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 12

cd Path Building

GraphPathFinder

+ getAllPaths(boolean[][], Map<Integer, Set<Integer>>, Connection) : Set<Path>

GraphPathFinderCache

~ addEntry(SourceDestinationPair, Set<Node>, Set<Path>) : void

~ getPathsOnIgnoringNodes(SourceDestinationPair, Set<Node>) : Set<Path>

~ getAllPaths() : Set<Path>

~ cleanup() : void

~ checkAl ive() : void

MemoryCache

Node

+ getId() : int

+ getIdAsString() : String

Path

+ containsNode(Node) : boolean

+ isCyclePresent() : boolean

+ isSelfEdge() : boolean

+ getIntermediateNodes() : List<Node>

+ fromNode() : Node

+ toNode() : Node

PathReplicationUtil

+ replicatePaths(Set<Path>, Map<Integer, Set<Integer>>) : Set<Path>

SourceDestinationPair

+ SourceDestinationPair(Node, Node)

+ getDestNode() : Node

+ getSrcNode() : Node

DatabaseCache

Graph

+ Graph()

+ Graph(boolean[][])

+ addAdjacentNode(Node, Node) : void

+ addNode(Node) : void

+ getAdjacentNodes(Node) : Set<Node>

+ containsNode(Node) : boolean

+ numberOfNodes() : int

+ allNodes() : Set<Node>

+ isEdgePresent(Node, Node) : boolean

-destNode-srcNode

-sdp

-cache

-inputGraph

«use»

«instantiate»

Figure 5 Class diagram of Path Generation Module

Algorithm for Path Generation
This algorithm computes all possible paths present in a directed graph. No path
returned should contain a cycle. Suppose the graph is (V, E) where V is the set
of vertices and E is the set of edges. A source-destination-pair (SDP) is
represented as i->j.

GraphPathFinderCache.getPathsOnIgnoringNodes(SDP, Set) method returns
the set of paths for given SDP and ignored nodes. Denote the SDP by i->j, and
ignoredNodes by N.

Let n(p) denote the nodes in a path p. Then, given that N1 � N2, we can
compute P(i->j, N1 from P(i->j, N2) using the following formula
P(i->j, N1) = {p : p � P(i->j, N2), n(p) ∩ N1 = {} }.

Thus this method is expected to do the following:

1. If there is an entry in the cache P(i->j, N), return it, else continue.

2. If there exists an entry in the cache P(i->j, M) such that M � N then
compute P(i->j, N) using above formula and return it, else continue

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 13

3. Return null

Note that if an empty set of paths is returned, it means that it has been computed
already and there are no paths present, i.e. P(i->j, N) = {}. The algorithm is as
follows:

For each pair of nodes {i, j : i � V, j � V, i ≠ j} in the graph, call getPaths(i->j, {}).
Self-edges (a self-edge is a path of the form i->i) are then added to the resulting
set of paths. getPaths() is the method where the core of the algorithm resides.
Suppose P(i->j, N) is the set of paths about to be returned from getPaths().
Following is what happens on a call getPaths(i->j, N), where N is the
ignoredNodesSet :

1. Let X = GraphPathFinderCache.getPathsOnIgnoringNodes(SDP, Set)

with (i->j, N) as parameters;

1. If X != null, then P(i->j, N) = X; return P(i->j, N).

2. Else continue.

2. If i->j � E then add a path i->j to P(i->j, N).

3. Let K = {k : k � V, k ≠ i, k ≠ j, k � N, i->k � E).

1. For each k ∈ K, do the following:

4. Call getPaths (k->j, N ∪ {i}). Suppose the returned set of paths is R.

5. For each path Rx (0 < x < |R|) in R, add the path i->Rx to P(i->j, N).

6. Add P(i->j, N) to the cache.

7. Return P(i->j, N)

Category

What is a Category
Category is a collection of attributes from one or more UML classes. These UML
classes may be from same or different applications. The UML classes in a
category should be directly or indirectly connected using UML associations.

As an illustration of the usage of category, consider the following use case: Get
all genes with annotation which are associated with a given "Gene" through
pubMed literature abstract i.e. get list of genes having literature relationship
correlation value > 0.5 and have relationship with given gene.

The UML diagram for the classes in the query is

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 14

Figure 6 diagram for classes in category

To build the example query, user would

• Search the four classes individually

• Add limits on each of them

• Connect all the classes in the DAG view

Shortcomings of above process:

• UML Class is a collection of attributes that makes sense to developers and
bioinformaticians.

• The steps described above are cumbersome and time-consuming

• Each user who wishes to perform this query has to follow this process
every time

In certain cases it may be found/felt that each user will define limits on specific
attributes of certain logically related classes and connect them by similar paths.
In such cases, those attributes can be grouped together to build predefined units
with unambiguous paths to save users’ time. These predefined units are
categories.

Benefits

• Ability to apply limits on attributes of several UML classes in one go

• Paths among classes in a category will be predefined in metadata. Thus,
the user need not find paths required to traverse logically related classes
every time.

• End-user sees attributes in a single logical unit even though they belong to
different classes due to modeling constraints

• Users with limited knowledge of UML domain models can query on
categories.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 15

• Advanced users can also use categories as building blocks for their
complex queries

Creating a Category
Category is defined as a well-formed XML file called category XML.
CategoryXmlParser parses this file and generates an InputCategory object.
PersistCategory converts InputCategory to Category hibernate-object which will
be saved by CategoryOperations. This flow is explained in sequence diagram in
Fig. 7

Figure 7 Sequence diagram saving a category

Category XML

This is a well-formed XML file, which defines a category. All categories are
initially defined as a Category XML and then they are imported into the caB2B
MDR. The structure of this file is as shown in Fig. 8.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 16

Figure 8 Category XML structure

Figure 9 shows an example of the Category XML file for the category “Genomic
identifiers”

Figure 9 Example of Category XML file

Class Diagram
Classes involved in category creation are shown in figure shown below.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 17

cd CategoryOperations

DefaultBizLogic

CategoryOperations

+ saveCategory(Category) : void

+ getCategoryByEntityId(Long, Connection) : Category

+ getCategoryByCategoryId(Long, Connection) : Category

+ getAllSourceClasses(Category) : Set<EntityInterface>

+ getAllRootCategories() : List<EntityInterface>

+ getAllCategories(Connection) : List<Category>

+ getAllSourceAttributes(Category) : Set<AttributeInterface>

CategoryXmlParser

+ getInputCategory(String) : InputCategory

InputCategorialAttribute

+ getDisplayName() : String

+ setDisplayName(String) : void

+ getDynamicExtAttribute() : AttributeInterface

+ setDynamicExtAttribute(AttributeInterface) : void

InputCategorialClass

+ getAttributeList() : List<InputCategorialAttribute>

+ setAttributeList(List<InputCategorialAttribute>) : void

+ getChi ldren() : List<InputCategorialClass>

+ setChildren(List<InputCategorialClass>) : void

+ getPathFromParent() : long

+ setPathFromParent(long) : void

InputCategory

+ getRootCategorialClass() : InputCategorialClass

+ setRootCategorialClass(InputCategorialClass) : void

+ getSubCategories() : List<InputCategory>

+ setSubCategories(List<InputCategory>) : void

+ getName() : String

+ setName(String) : void

+ getDescription() : String

+ setDescription(String) : void

PersistCategory

+ persistCategory(InputCategory, Category) : Category

+ getCategoryEntity() : EntityInterface

+ persistCategories(String[]) : void

+ main(String[]) : void

1
*+attributeList

1

1+rootCategorialClass

«instantiate»

«instantiate»

«instantiate»

Figure 10 Classes involved in category creation

• InputCategory is an object representation of the "Category" tag of category
XML.

• InputCategorialClass is an object representation of the “CategorialClass"
tag of category XML.

• InputCategorialAttribute is an object representation of the "Attribute" tag of
category XML.

• CategoryXmlParser provides methods to parse a category XML (see
references) file and converts it into Java object form. These Java objects
will be used in actual category creation and saving.

• PersistCategory provides methods to save a category in the database. It
uses CategoryXmlParser to convert a category XML to corresponding
objects (InputCategory) and then builds actual Category objects and saves
them to the database using Hibernate.

• CategoryOperations provides functions for database operations needed for
a category such as save and retrieve.

Design Document: caBench-To-Bedside Chapter 3–Metadata Repository

 Page 18

Metadata Cache
Contents of MDR are needed frequently by various cab2b-components. To improve
efficiency, by avoiding database calls, metadata cache module is introduced. Classes
involved in this module are shown in diagram of Fig. 11.

IEntityCache is an interface with methods needed for metadata search. Those will be
explained in Metadata Search section later. AbstractEntityCache is an abstract class
having all the methods exposed by this module. All components access MRD
information through this class only. It provides variety of methods to get metadata along
with providing searching methods from IEntityCache. getCab2bEntityGroups () is the
only abstract method in AbstractEntityCache. This method is used to populate the
cache. So it is up to implementer’s responsibility to decide how it will get entity groups.
There are two implementing classes EntityCache and ClientSideCache.

EntityCache calls dynamic extension API directly to get entity groups. EntityCache is a
singleton class residing in server side. It is instantiated and populated on first server call.
It is then used by all of the components running at server side. ClientSideCache calls an
EJB UtilityBean to get entity groups as it won’t have direct access to DE APIs. It is also a
singleton class which is instantiated and populated before launching client. It is then
used by all of the components running at client side.

Figure 11 Classes in Metadata cache module

Design Document: caBench-To-Bedside Chapter 4–Metadata Search

 Page 19

Chapter 4 Metadata Search

Overview

As the end users may not be familiar with object models, there should be an approach
for them to first search for the entity on which they want to query. For example, an end
user will not know which entity has the attribute for clinical diagnosis in the caTissue
object model. The metadata enables users to first search for entities based on metadata
such as names, attribute names, permissible values, or definitions using free text search
or using concept codes. This module has backend search implementation and a user
interface to specify search conditions and to display search results.

Backend Implementation
Metadata search back end part exposes one method on MetadataSearch class

search(int[] searchTarget, String[] searchString, int basedOn)

• basedOn: the basis of search, whether a text based or concept code based
search is asked

• searchString[]: Array of Strings created by splitting string entered by user
based on space characters

• searchTraget[]: Where to search is specified by this. Typical values are
class, attribute, permissible values, class-description and attribute-
description

The dataset to be searched is decided by the IEntityCache object passed to
construct MetadataSearch object. IEntityCache provides searching methods like

• getEntityOnEntityParameters(entityCollection)

• getEntityOnAttributeParameters(attributeCollection)

• getEntityOnPermissibleValueParameters(PVCollection)

• getCategories(Collection<EntityInterface> entityCollection)

• getCategoriesAttributes(attributeCollection)

Each of the above methods returns a MatchedClass object. MatchedClass is a
wrapper around a set of entities. The search () method searches each
searchTarget for all strings in searchString array by calling one of the above
methods of IEntityCache for each searchString. It then merges the results of all
individual searches using a method createResultClass () and returns one
MatchedClass object.

CompareUtil is responsible for deciding whether a particular entity, attribute,

permissible value or semantic property is matching the user’s criterion. It has

compare() methods which takes a pair of entities, attributes, permissible values or

semantic properties and returns a boolean. If the user entered string is found in string

to be searched, then it is appended to the result. The diagram of Fig. 12 shows all of

the classes along with their behaviors and relationships with each other.

Design Document: caBench-To-Bedside Chapter 4–Metadata Search

 Page 20

Figure 12 Classes- Metadata Search backend

Design Document: caBench-To-Bedside Chapter 4–Metadata Search

 Page 21

User Interface

User interface of this module mainly consists of a SearchPanel.
AdvancedSerachPanel and SearchResultPanel are embedded in main
SearchPanel for common functionalities and code reuse. AdvancedSearchPanel
is the panel where user specifies search criterion, SearchResultPanel displays
search results using pagination component (for details refer to chapter
Pagination Component). The diagram below shows these classes along with
their local classes.

• AdvancedSearchPanel: It is a class which contains commonalities between
the collapsible portions of the advanced/category search panels for the
'Choose Category' as well as 'AddLimit' section from the main search
dialog. TaskPaneMouseLister is its local class. The collapsible portion
provides options for searching category, attribute, permissible values with
provision of concept code or text search.

• SearchResultPanel: This class that contains commonalities required for
displaying results from the 'AddLimit' and 'Choose Category' section from
the main search dialog. MyCellRenderer, AddLimitButtonListner,
CDETableModel, EditLimitButtonListner, AttributeDetailsLinkListener are its
local class.

• SearchPanel: It is the main class that contains UI commonalities between
the advanced/category search panels for the 'Choose Category' as well as
'AddLimit' section from the main search dialog. SearchActionListener is its
local class.

Design Document: caBench-To-Bedside Chapter 4–Metadata Search

 Page 22

Figure 13 Classes- Metadata Search user interface

Design Document: caBench-To-Bedside Chapter 5–Query Object

 Page 23

Chapter 5 Query Object

Overview
The query-object (IQuery) provides the interfaces used to represent a user-
defined query. The query consists of outputs (represented by IOutputTreeNode)
and constraints (represented by IConstraints). User defined conditions (e.g.
Participant.sex = ‘female’) are represented by ICondition. Conditions on different
attributes of an entity are grouped together as a rule (represented by IRule).
Various rules/expressions on an entity can be logically grouped into an
expression (represented by IExpression). An expression thus consists of
operands (i.e. rules or sub expressions; this is represented by
IExpressionOperand) connected by logical operators (AND, OR). Operands in an
expression may also be parenthesized.

The various expressions thus formed need to be linked together. Two
expressions are linked by an association (represented by IAssociation). These
linkages among the expressions constitute the join graph (represented by
IJoinGraph).

Interface Summary

ICondition A condition containing an attribute, relational operator and value(s).
E.g. participant.sex = 'Male' forms one ICondition

IRule A list of conditions on different attributes of an entity.
The conditions in a rule are implicitly linked by an AND condition.

ILogicalConnector Represents a logical connector (AND / OR). The nesting represents the
number of parentheses (depth of parentheses) around the logic portion
(AND or OR) of the connector.

IExpressionId An immutable wrapper around int used to uniquely identify an
expression within a query. It is auto generated when an expression is
added to a query (using IConstraints.addExpression).

IExpression A list of operands, and the logical connectors (AND, OR) together form
a logical expression. The connectors are identified by the position of
the operands on either side. An IExpression belongs to a constraint
entity and constraints on another associated entity will be present as a
sub expression on the associated entity. Conversely, if an expression
has a sub expression, there must be an association in the join graph
from the parent expression to the sub expression.
Note: "sub expression" refers to an operand that is the IExpressionId of
the child expression. The entity of the sub expression will generally be
different from the entity of this expression (the exception is when a
class is associated to itself, e.g. Specimen class in caTissue Core).
The expression for an ExpressionId is found from IConstraints.

IExpressionOperand A marker interface for an operand. An operand is either a sub
expression (in which case, the corresponding expression id is added),
or a rule.

IJoinGraph A rooted, directed acyclic graph with expressions as vertices, and
associations as edges. The graph will always contain all the
expressions' ids (obtained from IConstraints) as vertices. The vertices

Design Document: caBench-To-Bedside Chapter 5–Query Object

 Page 24

will be added to/removed from the Joingraph as and when expressions
are added to/removed from IConstraints. The methods in Joingraph can
only add/remove associations among the vertices.
If v1 and v2 are two vertices, the direction will be v1->v2 if v2 is a sub
expression of v1. This graph determines the join conditions in the
query. E.g. for each edge (v1, v2) there will be a join between the
entities (IConstraintEntity) of the expressions denoted by v1 and v2;
and the join condition is determined by the information in IAssociation.

IQueryEntity An entity on which the user specifies limits (constraints)
e.g. Participant is an IQueryEntity

IConstraints Contains information about the constraints of a query. It contains a list
of IExpressions. This list is indexed by IExpressionId. This is global
storage for all the expressions in a query. Calling the addExpression()
method here creates an IExpression. It also contains a join graph for
specifying how the expressions are linked together.

IOutputEntity An entity which is desired as the output of the query.

IOutputTreeNode The output entities of a query form a tree with vertex as IOutputEntity
and edge as IAssociation. IOutputTreeNode represents one node of
this tree.

IQuery The query object representing a complete user-defined query
consisting of outputs and constraints.

Design Document: caBench-To-Bedside Chapter 5–Query Object

 Page 25

Class diagram
cd queryobject

«interface»

IRule

+ addCondition() : ICondition

+ addCondition(ICondition) : ICondition

+ getCondition(int) : ICondition

+ getContainingExpression() : IExpression

+ size() : int

IBaseQueryObject

«interface»

IQuery

+ getConstraints() : IConstraints

+ setConstraints(IConstraints) : void

+ getRootOutputClass() : IOutputTreeNode

+ setRootOutputClass(IOutputTreeNode) : void

IBaseQueryObject

«interface»

IOutputTreeNode

+ addChild(IAssociation, IOutputEnti ty) : IOutputTreeNode

+ getOutputEntity() : IOutputEntity

+ getChildren() : List<IOutputTreeNode>

+ getAssociationsWithChild(IOutputEnti ty) : List<IAssociation>

+ getAssociationWithParent() : IAssociation

+ removeChild(IAssociation, IOutputEnti ty) : boolean

+ getParent() : IOutputTreeNode

+ isLeaf() : boolean

+ isRoot() : boolean

IBaseQueryObject

«interface»

ILogicalConnector

+ getLogicalOperator() : LogicalOperator

+ setLogicalOperator(LogicalOperator) : void

IBaseQueryObject

«interface»

IExpressionOperand

+ isSubExpressionOperand() : boolean

«interface»

IExpressionId

+ getInt() : int

«interface»

IExpression

+ getOperand(int) : IExpressionOperand

+ getConstraintEnti ty() : IConstraintEntity

+ setOperand(int, IExpressionOperand) : void

+ getLogicalConnector(int, int) : ILogicalConnector

+ setLogicalConnector(int, int, ILogicalConnector) : void

+ addParantheses(int, int) : void

+ addParantheses() : void

+ removeParantheses(int, int) : void

+ removeParantheses() : void

+ addOperand(IExpressionOperand) : IExpressionOperand

+ addOperand(ILogicalConnector, IExpressionOperand) : void

+ addOperand(int, ILogicalConnector, IExpressionOperand) : void

+ addOperand(int, IExpressionOperand, ILogicalConnector) : void

+ removeOperand(int) : IExpressionOperand

+ removeOperand(IExpressionOperand) : boolean

+ indexOfOperand(IExpressionOperand) : int

+ getExpressionId() : IExpressionId

+ numberOfOperands() : int

+ isVisible() : boolean

+ isInView() : boolean

+ setVisible(boolean) : void

+ setIsInView(boolean) : void

+ containsRule() : boolean

IBaseQueryObject

«interface»

IConstraints

+ getExpression(IExpressionId) : IExpression

+ removeExpressionWithId(IExpressionId) : IExpression

+ addExpression(IConstraintEntity) : IExpression

+ getJoinGraph() : IJoinGraph

+ getRootExpressionId() : IExpressionId

IBaseQueryObject

«interface»

ICondition

+ getAttribute() : AttributeInterface

+ getRelationalOperator() : RelationalOperator

+ getValue() : String

+ setAttribute(AttributeInterface) : void

+ setRelationalOperator(RelationalOperator) : void

+ setValue(String) : void

+ setValues() : void

+ addValue(String) : void

IBaseQueryObject

«interface»

IJoinGraph

+ getAssociation(IExpressionId, IExpressionId) : IAssociation

+ putAssociation(IExpressionId, IExpressionId, IAssociation) : IAssociation

+ removeAssociation(IExpressionId, IExpressionId) : boolean

+ isConnected() : boolean

+ containsAssociation(IExpressionId, IExpressionId) : boolean

+ getRoot() : IExpressionId

«interface»

associations::IAssociation

«interface»

dynamicextensions::AttributeInterface

«interface»

IOutputEntity

+ getUrls() : List<String>

+ setUrls(List<String>) : void

+ getSelectedAttributes() : List<AttributeInterface>

+ setSelectedAttributes(List<AttributeInterface>) : void

«interface»

IQueryEntity

+ getDynamicExtensionsEntity() : EntityInterface

+ isCategory() : boolean

«interface»

IInterModelAssociation

+ getSourceAttribute() : IAttribute

+ getTargetAttribute() : IAttribute

+ removeSourceServiceUrl(String) : boolean

+ removeTargetServiceUrl(String, String) : boolean

+ setSourceAttribute(IAttribute) : void

+ setTargetAttribute(IAttribute) : void

+ addSourceServiceUrl(String) : void

+ addTargetServiceUrl(String, String) : void

«interface»

IIntraModelAssociation

+ getTargetRoleName() : String

+ setTargetRoleName(String) : void

+ getSourceRoleName() : String

+ setSourceRoleName(String) : void

«interface»

dynamicextensions::AssociationInterface

«interface»

dynamicextensions::EntityInterface

Figure 14 Interfaces that compose the query object

Design Document: caBench-To-Bedside Chapter 6–Query Engine

 Page 26

Chapter 6 Query Engine
Query engine interprets the query object and converts it to DCQL(s), executes
DCQL(s) and gets result back from data services

Overview
The category constraints made by the user using the caB2B client’s DAG view
are stored in the query-object i.e. ICab2bQuery (which extends IQuery to add
information regarding output class’ service URLs). The query engine is an EJB
that processes the ICab2bQuery to form the corresponding DCQL, executes the
DCQL, and returns the results back to the client.

Class diagram
cd ClassDiagram

ConstraintsBuilder

+ ConstraintsBuilder(ICab2bQuery, CategoryPreprocessorResult)

+ buildConstraints() : ConstraintsBui lderResult

ConstraintsBuilderResult

- expressionToConstraintMap: HashMap<IExpression, DcqlConstraint> = new HashMap<IEx...

- classToDcqlConstraintsMap: HashMap<EntityInterface, List<DcqlConstraint>> = new HashMap<Ent...

+ getExpressionToConstraintMap() : Map<IExpression, DcqlConstraint>

+ getDcqlConstraintForClass(EntityInterface) : DcqlConstraint

QueryExecutor

+ executeQuery(ICab2bQuery) : IQueryResult

DcqlConstraint

- constraintType: ConstraintType

- constraint: Object

+ DcqlConstraint()

DcqlConstraint(ConstraintType)

+ getConstraintType() : ConstraintType

- setConstraintType(ConstraintType) : void

getConstraint() : Object

setConstraint(Object) : void

«enumeration»

DcqlConstraint::ConstraintType

+ «enum» Any:

+ «enum» Attribute:

+ «enum» Group:

+ «enum» LocalAssociation:

+ «enum» ForeignAssociation:

AbstractStatelessSessionBean

QueryEngineBusinessInterface

QueryEngineBean

+ executeQuery(ICab2bQuery) : IQueryResult

IBaseQueryObject

«interface»

IQueryResult<R extends IRecord>

~ getRecords() : Map<String, List<R>>

~ addRecord(String, R) : void

~ addRecords(String, List<R>) : void

~ addUrl(String) : List<R>

~ getOutputEntity() : EntityInterface

CategoryPreprocessor

+ processCategories(IQuery) : CategoryPreprocessorResult

CategoryPreprocessorResult

- exprsSourcedFromCategories: Map<EntityInterface, Set<TreeNode<IExpression>>>

- redundantExprs: Set<IExpression>

- catClassForExpr: Map<IExpression, CategorialClass>

- original lyRootCatClasses: List<CategorialClass>

- categoryForEnti ty: Map<EntityInterface, Category>

+ getExprsSourcedFromCategories() : Map<Enti tyInterface, Set<TreeNode<IExpression>>>

+ getRedundantExprs() : Set<IExpression>

+ getOutputExpressions() : Set<TreeNode<IExpression>>

+ getCatClassForExpr() : Map<IExpression, CategorialClass>

+ getOriginallyRootCatClasses() : List<CategorialClass>

+ getCategoryForEnti ty() : Map<EntityInterface, Category>

«interface»

IQueryResultTransformer

~ getResults(DCQLQuery, Enti tyInterface) : IQueryResult<R>

~ getCategoryResults(DCQLQuery, CategorialClass) : IQueryResult<C>

QueryResultTransformerFactory

{leaf}

+ createTransformer(EntityInterface) : IQueryResultTransformer<?, ?>

«creates»

«call»

-constraintType

«instantiate»

«call»

«use»

«use»
«use»

«use»

«instantiate»

«instantiate»

«use»

Figure 15 Interfaces and classes that compose the query engine

Description of classes and their interactions:

• QueryEngineBean is an EJB that receives the calls for query execution
from the caB2B client. It just forwards the call to QueryExecutor.

• IQueryResult is a map of the service URL to records obtained from that
service. The records are represented as a two-dimensional array with
columns corresponding to attributes and rows corresponding to values.

• QueryExecutor uses the ConstraintsBuilder to form DCQL(s), hands over
the DCQL(s) to an appropriate transformer and returns the resulting

Design Document: caBench-To-Bedside Chapter 6–Query Engine

 Page 27

IQueryResult. Multiple DCQLs are fired when the output is category;
CategoryPreprocessorResult is used in this process.

• CategoryPreprocessor modifies an input IConstraints by expanding the
IExpressions on categories to its constituent classes. Thus IConstraints is
modified to only contain IExpressions on classes.

• CategoryPreprocessorResult represents the results of the
CategoryPreprocessor. It provides additional information about the
relationship between the original category entities in the query and the new
expressions created for them.

• ConstraintsBuilder processes an IQuery object and returns a
corresponding ConstraintsBuilderResult object (See Figure 13.0). It uses
the CategoryPreprocessorResult for this processing.

• DcqlConstraint is a wrapper around any of the following four types of
objects that compose a part of the caGrid DCQLQuery. For details related
to these and DCQLQuery please see the caGrid Programmer’s Guide

� Attribute
� Association
� ForeignAssociation
� Group

• ConstraintType is used to distinguish among the above four types of
constraints.

• ConstraintsBuilderResult provides the DCQLConstraint corresponding to
each IExpression in the query.

• QueryResultTransformerFactory provides the appropriate transformer.+

• IQueryResultTransformer executes the DCQL using the caGrid FQP and
transforms the results to appropriate IRecord. See Query Result
Transformers (Chapter Record Customization)

Design Document: caBench-To-Bedside Chapter 6–Query Engine

 Page 28

Sequence diagram
sd SequenceDiagram

QueryExecutor

QueryEngineBean

Client

Locate ejb

instance using

Locator
CategoryPreprocessor

ConstraintsBuilder

build DCQL(s) using

ConstraintsBuilderResul t and

CategoryPreprocessorResult

QueryResultTransformerFactory

IQueryResultTransformer

In a single call to IQueryExecutor, depending on whether the output

entity is a class or category, only one of getResul ts or getQueryResults

methods, respectively, is called.

If the output is a category, then multiple DCQLs are created and multiple

calls to getCategoryResul ts are made. All the IQueryResul ts are then

merged into a single IQueryResult.

FederatedQueryEngine

transform the resul ts to

appropriate IQueryResult wi th

appropriate IRecord's

locate

executeQuery(ICab2bQuery)

new

processCategories(query)

CategoryPreprocessorResult:=

new(query, categoryPreprocessorResult)

buildConstraints

ConstraintsBuilderResult:=

createTransformer(outputEntity)

new

IQueryResultTransfomer

getResul ts(dcql, outputEnti ty)

getCategoryResults(dcql , categorialClass)

new

execute(dcql)

DCQLQueryResultsCollection:=

IQueryResult

IQueryResul t

IQueryResult

Figure 16 Sequence diagram to show how a query is executed and results are returned

Design Document: caBench-To-Bedside Chapter 6–Query Engine

 Page 29

Flowchart
cd Flowchart

Init currentExpr=rootExpr

Form Group or Attribute

corresponding to each

rule in the expression.

For all operands of

currentExpr do

Is operand a rule?

From the joinGraph, find

the association linking the

classes of the parent and

child expression.

Form DCQL "Association" Form DCQL
"ForeignAssociation"

(results in semantic join

across applications)

isInterModelAssociation?

Set currExpr = the

sub-expr operand

Break down the

constraints on categories

to constraints on actual

classes

operands left?

CategoryPreprocessor

ConstraintsBui lder

Is output a category?

Create DCQL with output

class as the target, and

appropriate constraints

(obtained from

ConstraintsBuilderResult)

Execute DCQL and obtain

results using appropriate

query result transformer

Perform a breadth-first trav ersal

of the categorial classes tree of

the category. At each lev el, form

DCQLs for the classes at that

lev el and obtain results for the

DCQLs using appropriate

transformers.

DCQL for a class also has constraints

corresponding to the ids of the parent class.

This is why the traversal is breadth-first.

The DCQLs for the classes at same level

are executed in paral lel . The

ICategorialClassRecord's obtained for a

class are added as children records for

the parent ICategorialClassRecord. Thus,

the tree of ICategorialClassRecord's is

also simultaneously formed.

Return the results

#No #Yes

#(recursiveCal l)

#Yes

#No #Yes

#No (proceed after recursion terminates)

Figure 17 Detailed steps within the QueryExecutor

Lazy initialization
Sometimes a record may be very big i.e. it may consume a lot memory. An
example is a biodatacube. Sending the complete record from the caB2B server
to the client would be unreasonable in such case because:

• Client-side memory would be relatively less.

Design Document: caBench-To-Bedside Chapter 6–Query Engine

 Page 30

• The user may not wish to see the complete record; only some parts of it
may be of interest at a time.

• Client performance may deteriorate due to the large amount of network
traffic.

Thus, it is required, in some cases, to be able to initialize a record lazily.

Lazy initialization entails the following:

1. Store the complete record on the server side, and provide a handle to it. This is
performed by edu.wustl.cab2b.server.queryengine.LazyInitializer. A complete record is
represented by the interface
edu.wustl.cab2b.common.queryengine.resul.IFullyInitializedRecord.

2. Maintain the handle as part of a partially initialized record. A partially initialized record is
represented by the interface
edu.wustl.cab2b.common.queryengine.result.IPartiallyInitializedRecord.

3. Obtain data for the uninitialized portions by providing a handle to the fully initialized
record, and parameters that identify the portions to fetch. The lazy parameters are
represented by edu.wustl.cab2b.common.queryengine.result.ILazyParams; the method
that does this lazy initialization is LazyInitializer.getView().

Details of these interfaces and classes follow:

edu.wustl.cab2b.server.queryengine.LazyInitializer

• int register(IFullyInitializedRecord fir) Registers a fully initialized record, and
provides a handle to it. Currently, the record is stored in an in-memory
map.

• IPartiallyInitializedRecord getView(int handle, ILazyParams params)
Identifies the fully initialized record corresponding to the handle, and
requests it to provide the IPartiallyInitializedRecord corresponding to given
ILazyParams.

• IFullyInitializedRecord getFullyInitializedRecord(int handle) Returns the
IFullyInitializedRecord corresponding to the handle.

• void unregister(int handle Unregisters the record. Currently, the record is
removed from the in-memory map.

edu.wustl.cab2b.common.queryengine.result.IFullyInitializedRecord:
• IPartiallyInitializedRecord view(ILazyParams params, int handle)

Returns the partially initialized record that corresponds to the parameters.
The handle is passed on to the newly created IPartiallyInitializedRecord.

edu.wustl.cab2b.common.queryengine.result.IPartiallyInitializedRecord

• int handle() The handle to the fully initialized record.

• ILazyParams initializationParams() The parameters with which this record
was created.

Example – BioAssayData

Design Document: caBench-To-Bedside Chapter 6–Query Engine

 Page 31

A BioAssayData record contains a biodatacube, which is a three-dimensional
array. The dimensions of this array can be quite large, and thus the cube may
require a huge amount of memory. Lazy initialization of this record is performed
by lazily initializing the contents of this array based on the indices of the cells the
user is viewing.

Following interfaces thus represent partially and fully initialized records
respectively:

• cab2b.common.caarray.IPartiallyInitializedBioAssayDataRecord

• cab2b.common.caarray.IFullyInitializedBioAssayDataRecord

Refer to Record Customization for the class diagram showing the genealogy of
these interfaces. The lazy parameters for this scenario are represented by
LazyParams from package
edu.wustl.cab2b.common.queryengine.result.I3DDataRecord

Design Document: caBench-To-Bedside Chapter 6–Query Engine

 Page 32

sd lazy

BioAssayDataResultTransformer

LazyInitializer

this partially initial ized record is created

with handle obtained from previous call .

The biodatacube is inited to be empty.

QueryExecutorClient

Call happens via

bean (not shown)

intermediate query building

steps not shown.

this call is made for each record obtained in the

results.

UtilityBean

«interface»

IFullyInitializedBioAssayDataRecord

this partially inited record corresponds to the params provided; e.g. only those

cel ls of the cube are populated whose data is about to be shown to the user in

the table on the UI

this cal l is made when user is viewing

a biodatacube in tabular format; as he

scrolls up/down or left/right in the

table, this cal l is made to fetch data

for the new cells.

this call is made when i t is safe to

dispose of this record; for example

when user closes the query wizard

the record correponding to the

handle is disposed

IQueryResult<?>:= executeQuery()

new

getResults(dcqlQuery, targetEntity);

new

register(ful lRecord)

handle

IPartiallyInitial izedBioAssayDataRecord:= createCaArrayRecord()

IQueryResult<IPartial lyInitializedBioAssayDataRecord>

IQueryResult<IPartiallyInitial izedBioAssayDataRecord>

getView(int handle, ILazyParams params)

getView(handle,params)

getFullyInitial ial izedRecord(handle)

view(params, handle)

IPartiallyIni tializedBioAssayDataRecord:=

IPartiallyInitial izedBioAssayDataRecord:=

IPartiallyInitializedBioAssayDataRecord

unregister(handle)

unregister(handle)

Figure 18 Sequence diagram - Lazy Initialization

Design Document: caBench-To-Bedside Chapter 7–Querying caArray using caB2B

 Page 33

Chapter 7 Querying caArray using

caB2B

Scope
Querying the caArray data service requires extensions to the default caB2B
querying mechanism. This document first explains the reason why these
extensions are required. It then explains the design of the relevant portions of
caB2B query module, and the actual extensions implemented to support
querying caArray.

Note that the content of this document is an edited extract of Chapter 13 “Record
Customization” of the caB2B 1.0 design document.

Prerequisite
Any application that is to be supported by caB2B has to be registered with the
metadata repository of caB2B. So, the caArray domain model xml has to be
loaded to the caB2B metadata repository.

Supporting caArray in caB2B

Overview
In caB2B, the user defines a query on the DAG. This user-defined query is
transformed to appropriate DCQL. The DCQLQueryResults obtained by
executing this DCQL are then transformed into an IQueryResult.

The IQueryResult is a caB2B-specific representation of the results. Logically,
IQueryResult is a collection of records (represented by IRecord’s). This chapter
explains how this caB2B-specific representation (i.e. IRecord) is customized to
support querying the caArray data service.

The IRecord IRecord is a map from an attribute to its value.

Why customize IRecord for caArray?
The default IRecord represents the record of a UML class, as obtained from a
data service that uses the default (de)serialization mechanisms of caGrid. A
custom subtype of IRecord would be defined to add more information to such a
record.

The caArray data service provides custom (de)serialization. It returns more
information than can be represented by IRecord; it returns identifiers of classes
associated to the target class. To store this information, a custom record has to
be defined.

Design Document: caBench-To-Bedside Chapter 7–Querying caArray using caB2B

 Page 34

Steps in customizing IRecord for caArray

1. Define appropriate subtype of IRecord; this is ICaArrayRecord.

2. Implement a query result transformer. This will be responsible for transforming
CQLResults into ICaArrayRecord.

3. Register the custom implementation in the configuration xml “ResultConfiguration.xml”.

The following sections explain the above steps in detail.

IRecord and its extensions for caArray
Following are the basic interfaces; the other interfaces are either markers or
mixins to represent the records from caArray data service.

• IRecord: The most basic interface; it represents a record as a set of
attribute-value pairs.

• IRecordWithAssociatedIdentifiers: Represents a record that can provide
identifiers of associated classes as well.

• ICategorialClassRecord: Represents the records of a category. The
records form a tree; the structure of the tree corresponds to the tree of
classes in the category.

cd Logical Model

Serializable

«interface»

IRecord

~ getRecordId() : RecordId

~ putValueForAttribute(AttributeInterface, Object) : void

~ putStringValueForAttribute(AttributeInterface, String) : void

~ getValueForAttribute(AttributeInterface) : Object

~ getAttributes() : Set<AttributeInterface>

~ copyValuesFrom(IRecord) : void

«interface»

IRecordWithAssociatedIds

~ getAssociatedClassesIdentifiers() : Map<AssociationInterface, List<String>>

«interface»

ICategorialClassRecord

~ getChildrenCategorialClassRecords() : Map<CategorialClass, List<ICategorialClassRecord>>

~ getCategorialClass() : CategorialClass

~ addCategorialClassRecords(CategorialClass, List<ICategorialClassRecord>) : void

«interface»

ICaArrayRecord

«interface»

ICaArrayCategoryRecord

Figure 19 IRecord and its caArray extensions

Design Document: caBench-To-Bedside Chapter 7–Querying caArray using caB2B

 Page 35

Query Result Transformers
A query result transformer is defined by the interface
edu.wustl.cab2b.server.queryengine.resulttransformers.IQueryResultTransfomer
<R extends IRecord, C extends ICategorialClassRecord> and is responsible for
executing a DCQL and transforming the results into an appropriate IQueryResult.
Following are the methods in IQueryResultTransformer:

• IQueryResult<R> getResults(DCQLQuery query, EntityInterface targetEntity);
<R> the type of records created when executing a query for a class.

o query the DCQL.
o targetEntity the target entity (corresponds to the target object of the

dcql).

• IQueryResult<C> getCategoryResults(DCQLQuery query, CategorialClass
categorialClass);
 <C> the type of records created when executing a query for a category.

o query the DCQL whose target object corresponds to the actual UML
class represented by the categorial class.

o categorialClass the categorial class.

Class diagrams for query result transformers are shown below.

Figure 20 Query Result Transformers

Design Document: caBench-To-Bedside Chapter 7–Querying caArray using caB2B

 Page 36

Note: The text on the generalization links refers to type parameters e.g.
declaration of DefaultQueryResultTransformer is class
DefaultQueryResultTransformer extends
AbstractQueryResultTransformer<IRecord, ICategorialClassRecord>

QueryResultTransformerFactory refers ResultConfiguration.xml to obtain the
appropriate transformer.

Inbuilt implementations of IQueryResultTransformer

• AbstractQueryResultTransformer This abstract class provides a skeletal
implementation of a query result transformer. Concrete implementations
need only implement the createRecords() and createCategoryRecords()
methods. Additional hooks are provided and can be used to customize the
creation and population of the records in the result.

• DefaultQueryResultTransformer This is the caB2B default query result
transformer. It parses the gov.nih.nci.cagrid.cqlresultset.CQLQueryResults
xml and extracts the values for the attributes of the target entity. The
records in the results are of the basic types IRecord and
ICategorialClassRecord.

Customization for caArray
The interface cab2b.server.caarray.resulttransformer.ICaArrayRecord is used to
represent a record of the caArray application. As explained previously, the
caArray service returns identifiers of classes associated to the target class. Thus,
an application-level transformer is defined for caArray that uses the caArray
deserializers and reads this information.

• AbstractCaArrayResultTransfomer: Provides an implementation of the
method createRecords() of AbstractQueryResultTransformer. It also
handles the deserialization of the caArray results xml into objects and
transforms these objects to ICaArrayRecord using reflection.

• DefaultCaArrayResultTransformer: This is the transformer for classes in
the caArray application. It provides an implementation of the
createCaArrayRecord() method of AbstractCaArrayResultTransfomer.

Design Document: caBench-To-Bedside Chapter 7–Querying caArray using caB2B

 Page 37

Figure 21 caArray Query Result transformer

Result Configuration XML
The query result transformer defined for caArray has to be registered with the
caB2B application in the ResultConfiguration.xml file as shown below. Refer the
first entry <application name=”caArray” >.

Design Document: caBench-To-Bedside Chapter 7–Querying caArray using caB2B

 Page 38

Design Document: caBench-To-Bedside Chapter 8–Querying secure data services

 Page 39

Chapter 8 Querying secure data

services

Overview
To query to a secure data service we need to pass grid credentials to the
Federated Query Engine (FQE). A grid credential (also called as grid proxy) is a
short term certificate. Getting this certificate is a two step process:

1. Authenticating user on an authentication service

Authentication service is a grid service which accepts user name and password,
and validates the user. If the user is a valid grid user then a SAMLAssertion (a
SAML certificate) is returned indicating successful authentication.

2. Obtaining grid proxy

The SAML certificate is passed to another grid service called Dorian which returns
a proxy certificate. As mentioned earlier, proxy is a short term certificate, with a life
span of maximum of 12 hours. After completion of a lifetime, it has to be renewed
using the SAML.

At times a Dorian service can work as authentication service but a separate
authentication service can also do this job. In order to be able to get SAML
assertion from authentication service, we need to have the certification authorities
(CA) certificates in the USER_HOME/.globus directory. The certificates in this
directory correspond to certificate authorities that you trust for issuing credentials.
Absence of these certificates will not allow you to complete the authentication
process. How to get these certificates is explained on caGrid wiki
http://www.cagrid.org/wiki/GTS:1.2:Administrators_Guide:Syncing_With_the_Trust
_Fabric
 In caB2B, the authentication is currently performed at the server side. At the
client side, a login dialog is presented to the user asking for grid user name and
password. These credentials are then passed to caB2B server for authentication.
Current design assumes that the authentication service is Dorian.

APIs to use

CaGrid provides following authentication related APIs.

Following classes are used.

Create authentication credentials

Design Document: caBench-To-Bedside Chapter 8–Querying secure data services

 Page 40

Authenticating user

Getting proxy from Dorian

Implementation

Following are the classes used in implementation:

1. LoginFrame is the entry point of the application. When user launches the application, a
dialog pops up prompting user to enter grid username, grid password and name of the
authentication service to check the credentials on (e.g. if user has created an account on
training service, training option from the dropdown is to be selected). The proposed
screen for login is given below

Figure 22 caB2B Login dialog

2. UserValidator is a client side class that calls UserBean for authentication. It is also
contains the proxy certificate received as a result of successful validation.

3. UserBean is an EJB that UserValidator calls to pass validation request to server side.

Design Document: caBench-To-Bedside Chapter 8–Querying secure data services

 Page 41

4. UserOperations is the class to which UserBean delegates its operations. validateUser()
method of this class takes username, password and the authentication URL and returns
the proxy after validation.

5. getDorianUrl(String idP) method of PropertyLoader returns the authentication service
URL based on the grid name passed.

6. CommonUtils class has a method executeQuery() which is used by query API to fire a
query. This method internally calls getProxy() method of UserValidator class to fire a
query on secure data service.

class mainframe

AbstractStatelessSessionBean

UserBusinessInterface

user::UserBean

+ validateUser(String, String, String) : GlobusCredential

DefaultBizLogic

user::UserOperations

- createCredentials(String, String) : Credential

- getGlobusCredentials(String, SAMLAssertion) : GlobusCredential

+ val idateUser(String, String, String) : GlobusCredential

util::PropertyLoader

- propertyfile: String = "cab2b.properties" {readOnly}

- props: Properties = Uti lity.getProp...

+ getDorianUrl(String) : String

UserValidator

- dorianUrl: String

- proxy: GlobusCredential

- userName: String

+ getProxy() : GlobusCredential

+ getUserName() : String

+ setUserName(String) : void

+ validateUser(String, String, String) : boolean

JXFrame

LoginFrame

- idProvider: Cab2bComboBox

- login: Cab2bButton

- passText : JPasswordField

+ selfReference: LoginFrame = this

- usrNameText: Cab2bTextField

- val idateCredentials(String, String, String) : boolean

Figure 23 Class Diagram for User Authentication

Design Document: caBench-To-Bedside Chapter 8–Querying secure data services

 Page 42

Sequence diagram:
sd Logical View

LoginFrame UserValidator PropertyLoader UserBean UserOperations

validateUser(userName, password, idPName)

getDorianUrl(idPName)

authUrl()

validateUser(userName, password, authUrl)

validateUser(userName, password, authUrl)

GlobusCredential(proxy)

GlobusCredential(proxy)

Figure 24 Sequence diagram of User Authentication

Design Document: caBench-To-Bedside Chapter 9–Custom UI Components

 Page 43

Chapter 9 Custom UI Components

Overview

The usual practice of UI development is to use standard UI controls with their
default properties and behavior. The problem with this approach is:

1. If the application requires a property (e.g. font for labels) to be standardized across
the application, a change is needed at every place wherever that component is
instantiated. This is quite cumbersome.

2. Sometimes standard component doesn’t provide required functionality and
onlyprovides limited functionality

Aforementioned problems are avoided by creating several components (see table)
by customizing and extending the standard Swing and SwingX components.
Customization includes modifying some default property and/or behavior for the
standard component to suit the requirements.

The Usability Engineering group makes UI standards available. For example, all
button labels should be of ‘Arial 10pt Normal’. This is achieved by defining
‘Cab2bButton’ that extends ‘JButton’ and sets the font at the time of creation. So
whenever a ‘Cab2bButton’ is created, it comes with customized font by default.
Also, font can be changed very easily by only modifying ‘Cab2bButton’ class and
the change would be reflected across all buttons in the application.

List of customized components

Original
Component

Customized
Component Name

Customization details

Usability
related?

JButton Cab2bButton Default font and preferred size is set Yes

JLabel Cab2bLabel Default font, background color is set Yes

JCheckBox Cab2bCheckBox Default font, background color is set Yes

JComboBox Cab2bComboBox Default font, background color and
preferred size are set.

Yes

JRadioButton Cab2bRadioButton Default font, background color is set. Yes

JTextField Cab2bTextField Default preferred size set. Yes

JFormattedTe
xtField

Cab2bFormatted-
TextField

Customized to handle field validation
like, field accepts only positive
integer, floats and alphanumeric
strings.

No

JXHyperlink Cab2bHyperlink
Cab2bHyperlinkUI

Customized by default to show the
hyperlink text underlined and each
hyperlink associated with a user
object. Default visited and un-visited
hyperlink color is set as per
recommendation.

Associating user
object with
hyperlink is
application
specific.

JXDatePicker Cab2bDatePicker Default preferred size is set. Yes

Design Document: caBench-To-Bedside Chapter 9–Custom UI Components

 Page 44

JXPanel Cab2bPanel Panel background color is by default
se t to white. It can be changed to any
other color by passing the appropriate
Color object.

Yes

JXTitledPanel Cab2bTitledPanel This panel background color is by
default set to white.

Yes

TableModel LazyTableModel Added the ability to fetch table data
as and when needed to display huge
data in table form.

No

JXTable Cab2bTable
Cab2bDefaultTable
Model

By default, “select all” of table rows
are enabled. Shows long texts in a
text area with text wrapping.

No

 StackedBox Customized to look as per the Visual
Design specification.

Yes

Table 1 Customized components in the caB2B application

Lazy Table Model

This is component developed for visualization of huge spreadsheet data. It only
fetches data that is currently required. It additionally caches the data to improve
performance. The list of classes involved is

• LazyDataSourceInterface: This is used by LazyTableModelInterface to
fetch the data only when required. It provides the description of the data
such as number of rows, number of columns etc. The method getData(int
row,int column) has a responsibility to fetch the data from the source (that
may be a servlet, ejb or anything). Additionally it can cache the data.

• AbstractLazyDataSource: provides a sample implementation of the getData
method. It converts the location of the required data to the cacheable page
unit. Then fetches the data of the page from the data source, caches the
page and extract required data from the page.

• BDQDataSource: This is the implementation of the
AbstractLazyDataSource for bio data cube (BDQ) object. It provides
implementation to fetch the portion of data for BDQ from the server and to
extract the required data from the page. It converts x and y co-ordinate into
the dimensions of the 3D representation of the BDQ object.

• PageDimension is used by data source to paginate the data. It gives the
dimension of the pages of a particular data. Page represents a small block
of data. The huge data can be broken down into the pages. PageInfo
represents metadata about the page. It provides information like starting x
and Y coordinate of a page in original data.

• LazyTableModelInterface: This is marker interface for the table models that
uses LazyDataSourceInterface to fetch actual data.

• DefaultLazyTableModel: delegates all calls to the contained data source.

• CacheInterface: provides method to cache the pages of the data. This is
used by data source.

• BucketCache: This is implementation of the cache based on bucket of the
pages. It keeps the fixed bucket of the pages. Each page can go into a

Design Document: caBench-To-Bedside Chapter 9–Custom UI Components

 Page 45

particular bucket depending on its coordinate. If a particular bucket is
already occupied, the new page replaces existing page from that location.

• MatrixCache: This is similar to bucketCache with two dimensional bucket
structures. Pages are put into a particular location of the matrix based on
its coordinate. If it is already occupied the new page replaces existing page
from that location.

Figure 25 Classes Involved in Lazy Table Model component

Design Document: caBench-To-Bedside Chapter 9–Custom UI Components

 Page 46

This component has been used to display Bio Data cube object. Following
sequence diagram shows further details.

Figure 26 Flow of events in displaying BDQ

Design Document: caBench-To-Bedside Chapter 10–Dynamic UI generation for add/edit limits

 Page 47

Chapter 10 Dynamic UI generation for

add/edit limits

Overview

The ‘Add Limit’ / ‘Edit Limit’ functionality of search data module allows the user to
specify rules/constraints on the attributes of a selected entity like
“edu.wustl.fe.Gene” or “Gene Annotation” respectively. Once the user decides the
category on which to add a limit, the system auto generates the user interface with
following properties:

- Alphabetically sorted list of attributes

- Attributes name are modified to make them user friendly (for example, clinicalDiagnosis
should be Clinical Diagnosis)

- Based on the data type of each attribute

- Applicable set of operators are visible

- Data type based validation

- If the attribute has permissible values, these are displayed in a multi-select list box.

The section below describes the design details of dynamic UI generation for the
Add / Edit limit functionality

Design

The dynamic UI generation is based on the following principles:

• The metadata for each attribute contains all the required information such
as data type and permissible values

• An XML file contains information about the display names for operators and
UI properties.

For each entity the UI is auto generated based on its metadata and the XML file
configuration

Metadata representation

Before we go into details of dynamic UI generation, is it important to understand
how metadata for an entity is represented. For more details on these classes
please refer to section Metadata Repository.

Dynamic UI configuration XML

This requirement needs mapping of attribute data type to all the information
needed to visually render the UI component corresponding to that attribute. The
information for rendering includes the following:

Design Document: caBench-To-Bedside Chapter 10–Dynamic UI generation for add/edit limits

 Page 48

• List of operators for a given data type and context (enumerated or non-
enumerated)

• The class name for the actual UI component to be instantiated, again for a
given type and context.

• The UI component representing any attribute should show user friendly
attribute name (i.e. by parsing the camel case words)

• Condition selection drop-down box

• Control to specify values for selected condition. This portion of the
component is variable and changes according to the data type and context
of the attribute (e.g. all attributes that contain enumeration, this would
always be shown as a multi-select list box)

This mapping is captured in a configuration file in XML format. Reasons for the
XML configuration file.

• Defining a configuration file to capture the mapping information helps
abstract that information out of the code. This means some of the UI
rendering information captured in the configuration file can change without
having to compile the code.

• XML allows for validations by defining a DTD. The validation can further be
made strict by defining data as actual xml elements. Thus (See Figure 3.0),
the DTD mandates that the XML document have a data element for all the
data types and include an operator list for all of them.

Figure 27 Snippet of DTD used for dynamic UI configuration XML

data-type-control - This is the root node of the control and can contain enumerated
or non-enumerated nodes as children

enumerated - This tag is parent of all the enumerated data types.

non-enumerated - This tag is parent of all the non-enumerated data type

string, number, boolean - these tags are the actual data type nodes which contain
information such as operators associated with this node, display names of these
operators, and the component which will render the attribute of this data type.
Refer to file dynamicUI.xml for this.

Auto generation of UI

The configuration XML file is parsed using a DOM parser and the information is
organized into the maps shown in the table below. This is a one-time activity and
happens for the first instance, when UI needs to be dynamically generated for a
class or category. All the logic is encapsulated in the ParseXMLFile class.

Design Document: caBench-To-Bedside Chapter 10–Dynamic UI generation for add/edit limits

 Page 49

Map type Details

Enum -Operator map
Note: ‘Enum’ in this column implies an
attribute containing permissible values.

Key = Enumeration representing data type.
Value = Collection of enumerations representing
operators

Enum-Component map Key = Enumeration representing data type.
Value = Name of UI component to be rendered

Non-Enum-Operator map Key = Enumeration representing data type.
Value = Collection of enumerations representing
operators

Non-Enumerated-Component map Key = Enumeration representing data type.
Value = Name of UI component to be rendered

Given an ‘EntityInterface’, for every ‘AttributeInterface’ contained therein, the
dynamic UI generation generates the UI component (details given here), based on
the metadata of the attribute. The following flow-chart explains details for this
activity:

Design Document: caBench-To-Bedside Chapter 10–Dynamic UI generation for add/edit limits

 Page 50

Figure 28 Detailed steps for generating UI component for an attribute

The SwingUIManager class has a static method generateUIPanel(EntityInterface)
that iterates over the collection of attributes and processes metadata information
based on the flow chart above to generate the UI component (Cab2bPanel) for that
attribute. It then returns an array of these UI components that are added to a panel
to represent the Add/Limit UI screen.

The UML diagram below shows the different classes involved in dynamic UI
generation

IComponent - UI component should provide API to get selected condition,
corresponding values and the attribute entity it represents. Thus one needs to have
a common interface containing these APIs, which every data type specific UI

Design Document: caBench-To-Bedside Chapter 10–Dynamic UI generation for add/edit limits

 Page 51

component should implement. This is the interface containing methods to get/set
UI component details for every attribute type.

Figure 29 Class diagram for classes participating in dynamic UI generation

AbstractTypePanel - This is an abstract UI component class, which contains
common functionalities needed by all the attribute type UI components. It
implements the IComponent. This component contains APIs to set UI for the
condition list and user-friendly attribute names. Additionally it has abstract methods
getFirstComponent() and getSecondComponent() to facilitate implementing class
to provide the specific JComponent object specific to the specific data type. For
each data type there is one class which extends this class, for example
NumberTypePane for Numeric data types like integer, long, and double.
StringTypePanel for String data type

Design Document: caBench-To-Bedside Chapter 11–Visual Query Interface OR Diagrammatic (DAG) view

 Page 52

Chapter 11 Visual Query Interface OR

Diagrammatic (DAG) view

Overview

The primary goal of this feature is to allow the user to do the following:

• View the category constraints added to the query in the form of graph
nodes.

• Link the selected category constraints visually

• Edit / delete query constraints

• Resolve ambiguities if multiple paths are available between the source and
target class / category constraints to link.

• The textual representation of the query expression

The basic design of the DAG view is to visually represent each constraint (i.e. a
limit on class or category) as a node of the graph and allow linking of constraints as
edges of the graph. NetBean’s Graph Library supports visualization and editing of
node-edge structures using drag and drop (org-netbeans-graph.jar), and it is
platform independent.

This section describes the design for the same. Chapters Metadata search and
Query Object are perquisites for this chapter.

The diagram (Figure 30 Basic workflow in the DAG) shows the basic workflow of
the DAG view. The sequence of steps involved in the DAG view is as below:

1. User searches for the classes / categories for which he wants to form a query.

2. From the returned results, the user selects the class / category of interest. The Add Limit
page shows all the attributes associated with selected class / category.

3. User specifies constraints on attributes and adds this constrained entity to query graph.

4. User may search and add different constraints to the query by repeating steps 1-3

5. User may select any two constrained entities and link them using the ‘Connect Nodes’
button.

6. If multiple paths are available for selected nodes, user may select multiple paths to
connect these entities.

7. User may repeat step 6, to connect different constrained entities in the query graph

8. User may edit constrained entity and change the rules / constraints added on the
attributes of the entity.

Design Document: caBench-To-Bedside Chapter 11–Visual Query Interface OR Diagrammatic (DAG) view

 Page 53

NOTE: Two entity nodes can be linked only if adding the selected path doesn’t
form a cycle in the query graph.

Figure 30 Basic workflow in the DAG

User Interface Design

This section describes the design of the user interface of the DAG view. It
describes the classes that constitute visualization of the DAG view. The class
diagram in Fig. 31 details the classes and interactions amongst them.

Design Document: caBench-To-Bedside Chapter 11–Visual Query Interface OR Diagrammatic (DAG) view

 Page 54

Figure 31 Class diagram for classes in the DAG view

• MainDagPanel: This class forms the core of the DAG view and is responsible for
handling different user actions, related to query construction and updating the
visual query graph. To display DAG on panel this class creates a JComponent
that renders nodes and links using createView(…) method on GraphFactory from
NetBean’s graph library.Whenever a user adds a limit UpdateGraph(…) method
adds an IExpression object representing the constrained category to the graph.

o LinkNode(…) method links two nodes if the caB2B server has a valid path
between the selected entities. If the system contains multiple paths between
selected expressions, the ambiguity resolver allows the user to select paths of
interest and links nodes with selected paths.

o deletePath() and deleteExpression() methods delete the selected link and
expression respectively from the UI as well as the backend query object.
GetExpressionString () returns the textual representation of the IQuery object.
This class also holds a reference of the IClientQueryBuilder (a wrapper over the
IQuery). The backend query building section describes this in detail.

• DagControlPanel: This class controls different user activities such as selected
nodes and clearing the DAG view.

• ExpressionPanel: This class provides the textual representation query object to
the user.

Apart from these UI classes, there are classes, which hold UI details of every link and node that is
rendered on the DAG panel. These classes and their details are described as follows:

• GenericNode, ClassNode and ClassNodeRender are involved in implementing
the graph node functionality. These are the classes which hold information such

Design Document: caBench-To-Bedside Chapter 11–Visual Query Interface OR Diagrammatic (DAG) view

 Page 55

as how to render the node, what expression the node holds, and what other
nodes are linked to this expression.

• SimpleLinkRenderer and OrthogonalLinkRouterLinkRenderer implement the
graph link related functionality. These classes mainly perform rendering of graph
link.

• IconPortRenderer and SimplePortRenderer are responsible for rendering
connection ports. In order to link two nodes, one needs to add ports to the source
and destination nodes.

Ambiguity resolver UI classes

This provides a user interface to show all the possible paths between selected
source and target expression entities and allows the user to select paths of
interest. This functionality queries the caB2B server to get all the available paths
between source and destination expression entities. The class diagram below
shows classes involved in implementing this functionality.

Figure 32 Class diagram for classes related to ambiguity resolver

• ResolveAmbiguity: This class queries caB2B server to get all the possible paths
between source and destination entities and pops up a dialog box containing an
instance of AvailablePathsPanel in order to allow the user to select multiple
paths. In case of a single path, this class doesn’t show this dialog box.

• AvailablePathsPanel: This panel holds the UI to show ambiguous paths.

• AmbiguityObject: The bean class holding the details of the entities between
which the system has to find paths and resolve the ambiguity.

• AmbiguityPathResolverPanel This displays list of available paths for the current
source, target entity and allows the user to select one or more paths from it.

Design Document: caBench-To-Bedside Chapter 11–Visual Query Interface OR Diagrammatic (DAG) view

 Page 56

Query Building

The data of visually constructed query is stored in an IQuery object. DAG holds a
reference to this object. The IQuery object needs to be modified whenever the user
links nodes, adds or deletes links or nodes from the view. The IClientQueryBuilder
interface defines method to update the query object according to the user’s
actions. ClientQueryBuilder implements the IClientQueryBuilder. The class
diagram below shows different methods on interface.

addExpressio adds the constrained category element to query object when the
user adds a limit.

addPath adds the associations between source and destination entities specified
by an IPath object. removeExpression method removes the expression with the
specified ExpressionId from the graph. removeAssociation removes specified
association between two ExpressionIds.

cd DAG Graph

«interface»

IClientQueryBuilderInterface

+ getQuery() : IQuery

+ setQuery(IQuery) : void

+ addExpression(IRule) : IExpressionId

+ editExpression(IExpressionId, IRule) : IExpression

+ removeExpression(IExpressionId) : IExpression

+ addPath(IExpressionId, IExpressionId, IPath) : List<IExpressionId>

+ addAssociation(IExpressionId, IExpressionId, IAssociation) : void

+ removeAssociation(IExpressionId, IExpressionId) : boolean

+ setLogicalConnector(IExpressionId, IExpressionId, LogicalOperator, boolean) : void

+ createExpressionCopy(IExpression) : IExpressionId

+ getEntities() : Collection<EntityInterface>

+ createDummyExpression(EntityInterface) : IExpressionId

+ addRule(List<AttributeInterface>, List<String>, List<String>, List<String>) : IExpressionId

+ addRule(List<AttributeInterface>, List<String>, List<List<String>>) : IExpressionId

+ addParantheses(IExpressionId, IExpressionId, IExpressionId) : void

+ removeParantheses(IExpressionId, IExpressionId, IExpressionId) : void

+ setOutputForQuery(EntityInterface) : void

+ setOutputForQueryForSpecifiedURL(EntityInterface, String) : void

+ getVisibleExressionIds() : Set<IExpressionId>

+ addExressionIdToVisibleList(IExpressionId) : void

+ removeExressionIdFromVisibleList(IExpressionId) : void

+ isPathCreatesCyclicGraph(IExpressionId, IExpressionId, IPath) : boolean

Figure 33 Client query builder interface for client side query building

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 57

Chapter 12 Pagination Swing

Component

Overview

In caB2B there are several instances where the user has to view large data sets.
The examples of such instances include viewing results of a metadata search or
viewing the results of a query. Traditionally, viewing of such large data sets is
facilitated by enabling scrolling of the results. However, this approach makes it
extremely cumbersome for the end-user to view the results, especially in case of
larger data sets.

A better approach would be to paginate the results, much like the numbers of a
book. This presents an organized view of the results and makes browsing large
data sets extremely convenient.

Since it is required to show a paginated view at several places in the application, it
becomes paramount to design a generic component (hence forth referred to as
Pagination component) that can be re-used across all screens. In other words the
nature of data to be paginated should not matter to the component.

In addition, it should also be possible to configure the pagination component, both
during initialization as well as dynamically at a later stage to paginate results based
on some sorting criterion. The sorting criterion could vary from being alphabetical
to some context specific sorting (for e.g. sorting a category search based on the
relevance of use). Thus the design for the generic component should be flexible
enough to plug the different sorting algorithms, depending on the context in which it
is used.

It should also be possible for the generic pagination component to select data
elements for certain context-specific operations (like the ability to select data
elements to add to the data list from the query results) by simply turning off or on
the feature at the time of configuring and initializing the component in the
application.

Given the generic nature of the component, the pagination component should
dynamically compute the amount of space available on the screen and compute
the number of elements to be displayed on a single page and consequently the
total number of pages.

The pagination component is designed based on all the considerations mentioned
above. Each element in the data set is displayed as a hyper-link with the provision

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 58

to display some description associated with it. Additionally, the design allows for
custom behavior for hyper-link clicks.

Design Details

The basic design for this component is based on the Swing UI MVC pattern; please
refer to the UML Diagrams shown below.

View

The JPagination class constitutes the view for the component. It is an instance of
JPanel and is further made up of the following components:

• JGroupActionPanel which extends JPanel and has hyperlinks which can perform
group selection operation on the page elements. More is explained on group
selection actions in Controller part.

• PagePanel which is a JPanel which is used to display the data elements for a
given page. Each display element is again an instance of JPageElement which
extends JPanel.

• JPageBar extends JPanel, contains hyperlinks to support navigation across
pages.

The above three sub components can be arranged in any order.

The page elements which are displayed in page panel can be displayed in different
configurations, the two important configurations are:

1. A linear list of page elements one below the other displayed in the page panel
2. A grid of page elements displayed in a matrix format. I.e. n page elements by m page

elements.

Pagination component with three sub-components and check boxes for
selections

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 59

Figure 34 Snapshot of a Pagination component

Controller

• Selections

Some of the group selection actions available on the page elements are:

1. Select All – by clicking on “Select All” hyperlink available in the group action
panel, user can select all visible and in-visible page elements.

2. Clear All – by clicking on the “Clear All” hyperlink available in the group action
panel, user can clear all the selections they have made in the visible and in-
visible pages.

3. Invert All – by clicking on the “Invert All” hyperlink available in the group action
panel, user can invert the selections made in all visible and in-visible pages.
Using Invert All action second time should bring back the original selections.

PageSelectionModel provides the backend for the above actions; there are other
APIs in this class to get status on the current selections like

1. Number selections made till now, in all pages.
2. Is any element selected or not.
3. Is selection empty

JPagination provides API to add and remove PageSelectionListener to it. This
enables user to listen for element selection, the event received is
PageSelectionEvent if any page elements selection changes.

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 60

JPagination has API’s to dynamically turn on and off the pagination component’s
elements selectable or not.

• Navigation
There are basically three kinds of hyperlinks in the page bar to aid navigation

1. “Next Page”, “Previous Page” hyperlinks usually represented by “>”, “<”
characters are used to sequentially navigate forward or backward through pages.
User clicks on these hyperlink results in page panel showing the corresponding
page.

2. User can directly view any page by clicking a page index hyperlink. Page index
hyperlinks are numbers if the pager is numeric pager, alphabets if the pager is
alphabetic pager, etc. These hyperlinks provide direct access to the desired
page, unlike the Next Page”, “Previous Page” hyperlinks which are for sequential
access.

3. Since there can possibly be many page index hyperlinks, page bar usually shows
a small set of page index hyperlinks (5,10, etc) out of the all page indices. So to
provide navigation through these page index hyperlinks, there are “Next Page
Indices” and “Previous Page Indices” hyperlinks respectively. User action on
these hyperlinks updates the visible current page index hyperlinks.

The text representing the “Next Page”, “Previous Page”, “Next Page Indices” and
“Previous Page Indices” hyperlinks can be changed to any string or characters at the
time of instantiation or can be changed dynamically(yet to implement).

Mouse Wheel Support

JPagination implements MouseWheelListener interface to provide fast sequential
navigation through pages. Mouse wheel action automatically updates the current
page index highlighting in the page bar.

Automatic Page Resize:

JPagination when provided with its parent components reference can automatically
resize the pages (i.e. element per page) depending on the free space available with
the parent component. This functionality is implemented by adding
ComponentListener to the parent component and firing appropriate events when the
parent component resizes in the action listener method

Model
The Pager interface, which is an interface to the pagination model and the
implementing classes such as PaginationModel essentially form the data model.
The AbstractPager is an abstract class which provides the skeletal
implementation for the Pager interface

AbstractPager also provides definition for final method subPage(). This method
will be called only when the pager is non-numeric, to sub paginate the main
pages whose size is more than desired.

AbstractPager also keeps a copy of original collection of page elements intact,
since this is needed for future use. Events like, changing the pager at runtime
needs the original page elements collection (This functionality is not implemented
in the current version).

AbstractPager has a map data structure which maps page index to a small
collection of page elements called page. The Actually data structures are
HashMap for map, String for page index and Vector for page. AbstractPager also

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 61

keeps a ready list of all page indices that are there in the Map data structure as
map’s keys

All concrete pager classes should extend the AbstractPager class and
compulsorily override the page() method, with their own logic to paginate the
elements except NumericPager.

The reason PaginationModel implements the Pager interface is to provide
consistent API’s to the view part. If PaginationModel doesn’t conform to the
Pager interface there can be chances where we introduce some methods in
PaginationModel which are not there in Pager instances. The other way of think
at it is, since Delegation in the patter used in PaginationModel, it becomes a kind
of norm to have all the methods which are available in Pager be present in
PaginationModel.

Thus the pagination model and paginating process is clearly separated from the
view part by using Pager interface and its concrete classes.

Pagination Levels: Pagination should be done at two levels

1) Level-1 Pagination: Can be any one of Numeric, Alphabetic, Keywords, Frequency, and
etc based Pagination.

2) Level-2 Pagination: Is always a Numeric Pagination depending on the Level-1
Pagination. If Level-1 pagination is a Numeric Pagination then there is no need to have
Level-2 Pagination. If Level-1 pagination is anything other than Numeric, we need Level-2
numeric pagination since non-numeric pagination doesn’t conform to the condition that a
page should have fixed number of page elements.

Thus level-1 pager is variable, it can be any kind of pagination, but level-2
pagination is always a numeric pager, if level-1 pager in non-numeric. And this
probably explains the reason why the subPage method in AbstractPager is final,
so that the actually concrete classes like AlphbeticPager can not override it, even
by mistake.

If level-1 pager is a numeric pager then there is no work for sub page method.

Example: Let us consider Alphabetic pagination as the Level-1 pagination, there
may be cases like page index “A” having a 20 page elements which can’t be
displayed on the screen without a scroll pane, but page index “B” may have only
2 page elements which will fit in one single page.

But for page with index “A” we have to again break the page with 20 elements
into much smaller page. Numeric Pager is the best choice for this kind of Level-2
pagination.

Level-2 pagination depends on the page size of the selected page in the Level-1
pagination. Hence the page with index “A” the numeric pager may provide
numeric page indices 1,2,3,4 for page with index “A”, but for page with index “B”
there is no need of second level page indices.

Note: Level-2 paging (sub paging) for non-numeric pager is not yet implemented.

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 62

UML Diagrams

Figure 35 Classes involved in Pagination component

Sequence Diagram

The sequence diagram above describes the way in which pagination component
is initialized first. The input to pagination component is a collection of page
elements, each page element implementing PageElement interface

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 63

Figure 36 Pagination Sequence Diagram

The steps of event happening while constructing pagination component is
explained as below:

1. JPagination accepts collection of elements as the parameter.

2. Creates a new instance of PaginationModel passing elements collection.

3. PaginationModel in-turn passes the elements collection to a subclass of Pager interface.

4. Pager internally calls the page() method to paginates the elements collection
depending on some criteria.

5. JPagination then gets all page indices from the pager to construct JPageBar sub
component.

6. JPagination gets first page from the pager to construct the page panel sub component.

7. JPagination constructs JGroupActionPanel sub component, and adds all these three
subcomponents to it.

Pagination Usage in caB2B:

In the current version of caB2B, pagination component is used in two places

Design Document: caBench-To-Bedside Chapter 12–Pagination Swing Component

 Page 64

1. In the advanced search feature to show the search result. Here, selection of page
elements is not needed; hence elements don’t have check boxes and the group action
panel. This is achieved by calling appropriate API’s in the JPagination class.

2. In View search result feature to show the results got from data services. Here selection of
page elements is important, since user would like to add the selected elements to the
data list. Hence check boxes and group action panels are enabled by calling appropriate
API’s in the JPagination class.

These are the two instances which highlight the fact that Pagination component
is generic in nature, which can be used in scenarios where long list of data needs
to be displayed in the GUI.

Design Document: caBench-To-Bedside Chapter 13–Search Data Wizard

 Page 65

Chapter 13 Search Data Wizard

Overview
The search data for experiment dialog is a wizard based UI that allows the end-
user to sequentially follow all the steps required to build, fire and view the results
of a caB2B query. In this document, we shall understand the basic composition
of the wizard as well as the navigation mechanism while moving from one step to
another.

Class Diagram
The following is the class diagram that illustrates the composition of the search
dialog wizard.

Figure 37 Class diagram for the Search dialog wizard

MainSearchPanel is the container class that represents the main wizard UI. It is
an instance of Cab2bPanel and uses an instance of BorderLayout to manage the
layout of its components. It is made up of the SearchTopPanel (added to the
north region), the SearchCenterPanel (added to the center region) and the
SearchNavigationPanel (added to the south region). The component is initialized
at creation time.

The class provides getter methods to access each of these panels, so as to
facilitate communication between the panels (For e.g. it is required for the
SearchNavigationPanel to communicate with the SearchTopPanel). It also stores
a reference to a cab2b implementation of the IclientQueryBuilderInterface, so
that the reference can be available at every stage of the query building.

Design Document: caBench-To-Bedside Chapter 13–Search Data Wizard

 Page 66

Cab2bPanel is a customized panel so that certain properties (like background
color) can be centrally set and used across the application.

SearchTopPanel is the component that forms the top section of the wizard and
its function is to visually indicate to the user the step that he is currently
performing.

This component is an instance of Cab2bPanel and is composed of as many
numbers of panels as there are steps in the wizard (in this case 5). It uses an
instance of GridLayout to manage the layout of the child panels. Each panel is
made of an instance of Cab2bLabel containing the appropriate text for the step in
the wizard. The component is initialized at creation time such that panel
corresponding to step1 has a white background and no border, while the panels
for the remaining steps have a blue background and a LineBorder, which is black
in color. The panel with the white background is always used to indicate to the
end-user the step that he/she is currently performing.

The setFocus (int index, boolean blnForward) public API sets the background
color of the panel corresponding to the step indicated by the index parameter, to
white. The boolean parameter is used to indicate the traversal of the navigation
so the adjacent panel (to the left or right depending on direction of traversal) can
be reset.

SearchCenterPanel is an instance of Cab2bPanel and is a container class for all
the UI components needed for each step in the wizard. The UI component for
each step is again an instance Cab2bPanel; thereby making this a container of
as many Cab2bPanels as there are steps.

It uses an instance of CardLayout to manage all the cards or in other words to
manage all the Cab2bPanels needed at each step of the wizard. This component
is initialized to contain and show the first card corresponding to the first step.
Subsequent cards are added dynamically based on action taken in previous
steps and shown as and when the user navigates across steps. The component
also maintains state information like the currently selected card (the current step
the user is on), and provided getter and setter methods for accessing and setting
the value respectively.

SearchNavigationPanel is the component that provides functionality to navigate
across the wizard. It is an instance of Cab2bPanel and uses an instance of
FlowLayout to manage the layout of all its child components (instances of
Cab2bButtons to facilitate navigation)

The component is also the event listener for its child buttons. For all navigations
in the forward direction (refer to sequence diagram), it queries the

Design Document: caBench-To-Bedside Chapter 13–Search Data Wizard

 Page 67

SearchCenterPanel to get the current step. It then loads and adds the UI
component corresponding to the next step to the SearchCenterPanel, if that is
not already added.

However, there is an exception to the above action. In case of viewing search
results, the UI component for viewing search results is always newly created and
added.

For navigations in the reverse direction the component merely asks the
SearchCenterPanel to show the previous card. If the next or previous component
is successfully loaded and added, it then calls the setFocus() API on the
SearchTopPanel .

Sequence Diagram
The sequence diagram below illustrates the flow of control when the user
chooses to navigate from step1 to step2 (for the first time) in the wizard.

Figure 38 sequence diagram for navigation from step1 to step2 in the wizard

Design Document: caBench-To-Bedside Chapter 14–View Results

 Page 68

Chapter 14 View Results
This section explains the classes involved in showing the query result.

Figure 39 Classes involved in displaying query results

• ViewSearchResultsPanel displays the result of the query in two ways. In a simple
view and a comprehensive view (not yet implemented).

• SimpleSearchResultBreadCrumbPanel represents one breadcrumb page of the
result. It contains result panel, a data list summary panel and a breadcrumb
panel to return to this result page. It contains result panel for a single object or list
of object. It also provides the implantation for the listener of the breadcrumb, to
view the details of a particular object and to show the related data.

• ResultPanel is an abstract class for the panel used to for the result. It provides
the operation like add to data list and apply data list.

• ViewSearchResultsSimplePanel is a panel to display the list of objects. When the
result of the query contains more than one object this panel is instantiated. It
contains the pagination component to show the result.

Design Document: caBench-To-Bedside Chapter 14–View Results

 Page 69

• ResultObjectDetailsPanel is a panel to display the details of single object. When
the result of the query contains a single object or when the detail of object is
viewed, this panel is instantiated. It uses ResultPanelFactory to create the panel
which is applicable for the object to be shown. It also contains the reference to
the applicable related data panels.

• AbstractAssociatedDataPanel is the base class for all the data panels used for
showing associated (related) data. Its iniGUI() method creates the hyperlink for
each of the related data.

• IncomingAssociationDataPanel represents the data which is related by incoming
association for the object that is currently displayed.

• OutgoingAssociationDataPanel represents the data which is related by outgoing
association for the object that is currently displayed.

• InterModelAssociationDataPanel represents the data which is related by an inter
model association for the object that is currently displayed.

Figure 40 Order of instantiation of panels for view results

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 70

Chapter 15 Record Customization

Overview
A user-defined query, represented by the query object, is transformed to
appropriate DCQL. DCQLQueryResults obtained by executing this DCQL is then
transformed into an IQueryResult.

IQueryResult is a caB2B-specific representation of the results. Logically,
IQueryResult is a collection of records (represented by IRecord’s). This chapter
explains how this caB2B-specific representation (i.e. IRecord) can be customized
based on the application/category being queried.

The IRecord

IRecord is a map from an attribute to its value.

Why customize IRecord?
The default IRecord represents the record of a UML class, as obtained from a
data service that uses the default (de)serialization mechanisms of caGrid. A
custom subtype of IRecord would be defined to add more information to such a
record. Such a need can arise due to following reasons:

• Custom (de)serialization by data services

A service might in some cases return more information than can be represented by
IRecord. An example is the caArray service that returns identifiers of classes associated
to the target class. To store this information, a custom record has to be defined.

• Complex attributes

Some entities can have complex attributes which cannot be represented directly in
IRecord. For example,

o A BioAssayData record obtained from caArray data service has a bioDataCube
attribute. This is a three-dimensional array of objects.

o Each category record has other associated children category records.

Steps in customizing a record

1. Identify the entity or application for which the customized record has to be defined. Define
appropriate subtype of IRecord, say ICustomRecord.

2. Implement any of the following components related to this customization:

• Query result transformer: Responsible for transforming CQLResults into
ICustomRecord.

• Record details UI panel: Responsible for displaying ICustomRecord on the UI.

• Data list transformers: Specify how an ICustomRecord is persisted as part of a
datalist

o Data list saver: Responsible for saving an ICustomRecord when it is part of a
data list.

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 71

o Data list retriever: Responsible for creating an appropriate ICustomRecord
while retrieving a data list.

3. Register these implementations in the configuration xml “ResultConfiguration.xml”.

Result Configuration XML

Figure 41 Sample ResultConfiguration.xml

Note that the following are provided by caB2B:

• Customizations for “CategoryEntityGroup”

• caB2B defaults (the outermost default tag)

caArray is an example of a custom-extension. caArray has its own default query-
result-transfomer that overrides the caB2B default query-result-transformer. But
caArray needs customized result-renderers and datalist-transformers for the
class BioAssayData.

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 72

ResultConfigurationParser
This is a singleton class which parses the ResultConfiguration.xml file and
provides following methods for accessing the entries. If no entry is found for a
given entity, the caB2B default is returned.

• getResultRenderer(String applicationName, String entityName)

• getResultTransformer(String applicationName, String entityName)

• getDataListSaver(String applicationName, String entityName)

• getDataListRetriever(String applicationName, String entityName)

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 73

IRecord and its extensions

Figure 42 IRecord and its extensions

Following are the basic interfaces; other interfaces are either markers or mixins.

• IRecord: The most basic interface; it represents a record as a set of attribute-value pairs.

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 74

• IRecordWithAssociatedIdentifiers: Represents a record that can provide identifiers of
associated classes as well.

• I3DDataRecord: Represents a record that has additional three-dimensional data.
Methods provide the 3D matrix, and metadata about the dimensions.

• IPartiallyInitializedRecord and IFullyInitializedRecord: These interfaces are used for
lazily initializing a record. See Lazy Table Model (Chapter Custom UI components) for
more details.

• ICategorialClassRecord: Represents the records of a category. The records form a tree;
the structure of the tree corresponds to the tree of classes in the category.

Query Result Transformers
A query result transformer is defined by the interface
edu.wustl.cab2b.server.queryengine.resulttransformers.IQueryResultTransfomer
<R extends IRecord, C extends ICategorialClassRecord> and is responsible for
executing a DCQL and transforming the results into an appropriate IQueryResult.
Following are the methods in IQueryResultTransformer:

• IQueryResult<R> getResults(DCQLQuery query, EntityInterface
targetEntity);

<R> the type of records created when executing a query for a class.

Parameters:
� query the DCQL.
� targetEntity the target entity (corresponds to the target object of

the dcql).

• IQueryResult<C> getCategoryResults(DCQLQuery query,
CategorialClass categorialClass);

 <C> the type of records created when executing a query for a category.
Parameters:

o query the DCQL whose target object corresponds to the actual UML class
represented by the categorial class.

o categorialClass the categorial class.

Class diagrams for query result transformers are shown below.

Note: The text on the generalization links refers to type parameters e.g.
declaration of DefaultQueryResultTransformer is class
DefaultQueryResultTransformer extends
AbstractQueryResultTransformer<IRecord, ICategorialClassRecord>

QueryResultTransformerFactory refers ResultConfigurationParser to obtain the
appropriate transformer.

Inbuilt implementations of IQueryResultTransformer

• AbstractQueryResultTransformer This abstract class provides a skeletal
implementation of a query result transformer. Concrete implementations
need only implement the createRecords() and createCategoryRecords()
methods. Additional hooks are provided and can be used to customize
the creation and population of the records in the result.

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 75

• DefaultQueryResultTransformer This is the caB2B default query result
transformer. It parses the
gov.nih.nci.cagrid.cqlresultset.CQLQueryResults xml and extracts the
values for the attributes of the target entity. The records in the results are
of the basic types IRecord and ICategorialClassRecord.

Figure 43 Query Result Transformers

Customization example – caArray
The interface cab2b.server.caarray.resulttransformer.ICaArrayRecord is used to
represent a record of the caArray application. As explained previously, the
caArray service returns identifiers of classes associated to the target class. Thus,
an application-level transformer is defined for caArray that uses the caArray
deserializers and reads this information.

• AbstractCaArrayResultTransfomer: Provides an implementation of the
method createRecords() of AbstractQueryResultTransformer. It also
handles the deserialization of the caArray results xml into objects and
transforms these objects to ICaarrayRecord using reflection.

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 76

• DefaultCaArrayResultTransformer: This is the caArray application level
default transformer.

• BioAssayDataResultTransformer: The caArray service returns a biodata
cube as data associated to any BioAssayData. This transformer is
required to read the biodatacube and transform it to an appropriate
IPartiallyInitializedBioAssayDataRecord. (For details of lazy initialization,
refer Lazy Table Model (Chapter Custom UI components)

Figure 44 Query Result transformers

Data list transformers
A data list is saved using the dynamic extensions (DE) API. To do this, following
transformations are needed:

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 77

• From IRecord to DE specific representation of the record; this is needed
while saving a data list.

• From DE specific representation of a record to its corresponding IRecord;
this is needed while retrieving a data list.

The corresponding saver and retriever interfaces are

• edu.wustl.cab2b.server.datalist.DataListSaver

• edu.wustl.cab2b.server.datalist.DataListRetrieve

These interfaces identify the operations that can vary depending on the record
customization. For saving a data list, a new entity is created for which records
are populated. A saver customizes the attributes/associations of the new entity
that is created.

Figure 45 Data list savers and factory

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 78

For example, consider a specialization of IRecord called IFooBarRecord which
represents records for an entity FooBarEnt. IFooBarRecord provides additional
info, say, through the method getFoo(). In this case, we can have a FooBarSaver
and FooBarRetriever. FooBarSaver.getNewEntity() method will return an entity
that contains all attributes from FooBarEnt, and an additional attribute called
"foo". The method FooBarSaver.getRecordAsMap() will appropriately put an
entry into the map for the attribute "foo", by reading the value from
IFooBarRecord.getFoo().

Then, while retrieving the records, the value of the attribute "foo" of the entity
"FooBarEnt" will be set for the property IFooBarRecord.foo by the corresponding
retriever. This would be done in the method FooBarRetriver.
getEntityRecords(List<Long> recordIds).

Figure 46 Data list retrievers

Inbuilt implementations of DataListSaver / DataListRetriever

• AbstractDataListSaver: Skeletal implementation of a DataListSaver. A
concrete implementation need only implement the method
populateNewEntity() to add attributes and/or associations to the newly
created entity.

• AbstractDataListRetriever: Skeletal implementation of a
DataListRetriever. A concrete implementation need only implement the

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 79

method createRecord () to create an instance of appropriate subtype of
IRecord.

• DefaultDataListSaver: This is the default caB2B data list saver; the new
entity it creates is a clone of the original entity.

• DefaultDataListRetriever: This is the default caB2B data list retriever; it
creates records of the basic type IRecord.

• CategoryDataListSaver: New entities are created to represent the classes
and associations within the category and the records are stored into
appropriate entities.

• CategoryDataListRetriever: The records from the multiple entities are
grouped together to reconstruct the ICategorialClassRecord’s.

Customization example – caArray

Figure 47 Caarray extensions for data list operations

• BioAssayDataDataListSaver: As explained previously, the records of
BioAssayData contain a biodatacube which also has to be persisted.
Currently, this saver creates blob columns for the biodatacube and its
metadata.

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 80

• BioAssayDataDataListRetriever: This retriever reads the data from the
corresponding blob columns and populates this in the
IPartiallyInitializedBioAssayDataRecord representation of the record.

Result Renderers
The result renders are used to render the complete details of single record.

ResultPanelFactory uses ResultConfigurationParser to obtain the appropriate
renderer for the given type of the record. The default render is
edu.wustl.cab2b.client.ui.viewresults. DefaultDetailedPanel. It accepts IRecords
and renders attributes and its values in the form of a table with a row for each
attribute.

CategoryObjectDetailsPanel extends the functionality of default renderer to
display the tree like structure of the category. It accepts ICategorialClassRecord
as an input. It displays the attributes of the root categorical class using parent
renderer (i.e. DefaultDetailedPanel). It creates B2BTreeNode structure for the
associated child categories. If a particular child has a single record or one-one
association with the parent its records are displayed along with the parent itself
and not in a separate node. JTreeTable is the custom UI component that accepts
B2BTreeNode to display tree structure of the categories.

cd result panel models

CategoryObjectDetailsPanel

Cab2bPanel

R:extends IRecord

DefaultDetailedPanel

ThreeDResultObjectDetailsPanel

Figure 48 Result Panel Model

ThreeDResultObjectDetailsPanel is the renderer for the caArray object “Bio data
cube”. It is a three dimensional representation of micro array data. It uses
LazyTableModel to show the huge data.

Design Document: caBench-To-Bedside Chapter 15–Record Customization

 Page 81

Figure 49 Flow of events while displaying results

Design Document: caBench-To-Bedside Chapter 16–Data List

 Page 82

Chapter 16 Data List

Overview
The user’s selected data is represented by the data list. After adding data into the
data list, user can save it and create experiment out of it. It is more like a
shopping cart where user adds the data in which he / she is interested.

View Data list
Following diagram illustrates the classes involved in displaying the data list.

Figure 50 Classes involved in displaying data-list

• DataRow class represents a single object added into the data list. It gives
the tree like structure of the user’s data. The similar types of the objects
are grouped by an IDataRow and are distinguished by setting isData flag
to false (It is referred as a title node).

• DataList represents current selected data. It contains a tree of IDataRow.
The root of the tree is represented by a single IDataRow.

Design Document: caBench-To-Bedside Chapter 16–Data List

 Page 83

• DataListPanel is the container panel for data list. It contains
DataListDetailedPanelContainer and TreePanel

• TreePanel contains the tree of the data list. On selecting a particular node
its details are displayed in the DataListDetailedPanelContainer.

• DataListDetailedPanelInterface is implemented by a class that can be
used to show the details of objects in datalist. The getCSVData() method
returns the comma separated values of the object. This is used for
exporting the details of the object.

• DataListDetailedPanelContainer displays the details of the selected
IDataRow from TreePanel. If it is title node, then objects under it are
displayed in the form of the spreadsheet using
DefaultSpreadSheetViewPanel. If it is a single object the details are
displayed using DefaultDetailedPanel.

Data List Operations
Save and retrieve are the main operations related to data list.

A new model is created using the dynamic extensions (DE) API corresponding to
each data list. Since a data list is a set of trees, a dummy root entity is created
which has these trees as children. The dummy root entity is thus representative
of the data list. Then the records are saved as records of the respective entities
of this model using DE. These steps are orchestrated by the
DataListOperationsController. It has two methods:

• DataListMetadata saveDataList(IDataRow rootRecordDataRow,
DataListMetadata dataListMetadata). It saves the data list into the
database. In the process, appropriate DataListSaver is invoked to obtain
the DE specific representation of the records and the new model to be
created. See Data list transformers (Chapter CRecord Customization)

• List<IRecord> getEntityRecords(Long entityId). Return records of the
given entity. It delegates the operation to appropriate DataListRetriever.
See Data list transformers (Chapter CRecord Customization)

Following are the sequence diagrams illustrating the flow while retrieving and
saving records of a data list

Design Document: caBench-To-Bedside Chapter 16–Data List

 Page 84

sd datalist

DataListBean

DataListOperationsControllerClient DataListOperationsFactory

«interface»

DataListRetriev er<R
extends IRecord>

appropriate datalistRetriever is

obtained by referring to

ResultConfigurationParser.

getEnti tyRecord(entityId)

getEnti tyRecords(entityId)

createDataListRetriever(entity)

new

DataListRetriever:=

getEntityRecords()

List<IRecord>:=

List<IRecord>:=

List<IRecord>

Figure 51 Sequence diagram for retrieving records of a data list

The factory DataListOperationsFactory provides the appropriate
DataListRetriever or DataListSaver by referring to ResultConfigurationParser..

Design Document: caBench-To-Bedside Chapter 16–Data List

 Page 85

sd datalistsav e

Client

DataListBean

DataListOperationsController DataListOperationsFactory

«interface»

DataListSav er<R
extends IRecord>

cal led for each enti ty in

the data list

cal led for each record of that entity.

resulting map is persisted using DE

locate

saveDataList(rootDataRow,datalistMetadata)

saveDataList(rootRecordDataRow,dataListMetadata)

createDataListSaver(enti ty)

new

DataListSaver:=

getNewEntity()

EntityInterface:=

getRecordAsMap(record)

Map<AbstractAttributeInterface, Object>:=

Figure 52 Sequence diagram for saving records of a data list

Design Document: caBench-To-Bedside Chapter 17–Experiment

 Page 86

Chapter 17 Experiment

Overview
Using this feature, the user can create the experiment out of saved data-list. After
creating experiment, user can perform various operations on it like visualizing
data by employing viewers, perform analysis or filtering of the data etc.

Experiment Data Model
Following figure 53 shows the experiment data model.

Figure 53 Experiment data model

• AbstractDomainObject is the base of all the domain objects in caB2B. It
provides id and activity status fields required for all the domain objects

• AdditionalMetadata provides the additional information for the experiment
and related objects. It includes name, description, created time and last
updated time.

• Experiment contains the one or more DataListMetadata.

• ExperimentGroup is logical grouping of the experiments. It also has a
parent group. This gives the folder (tree like) structure for experiment and
experiment group.

• DataListMetadata is the object that represents the actual data saved. It
contains the one or more entity ids that correspond to the DE entity ids
created for the saved data.

Design Document: caBench-To-Bedside Chapter 17–Experiment

 Page 87

Saving an Experiment
Following sequence diagram shows the flow of events while creating and saving
a new experiment:

sd Experiment save

User

SearchNavigationPanel

NewExperimentDetailsPanel

Experiment

«interface»

ExperimentBusinessInterface

save data l ist

createNewExperiment

setName

setDescription

setProject

save

addDataListMetadata(dataListMetadata)

addExperiment(exp)

Figure 54 Flow of evens for saving experiment

Opening an Experiment
Following are the classes involved in displaying the experiment.

• ExperimentPanel is used to display details of all experiments. It is invoked
when Experiment tab on GlobalNavigation panel is clicked. It contains
ExperimentHierarchyPanel on left hand side and ExperimentDetailsPanel
on right hand side.

• ExperimentHierarchyPanel is a panel to display experiments folder
structure in the form of project and sub projects. On click of link in the tree
details of the selected experiment or group are shown in
ExperimentDetails panel.

Design Document: caBench-To-Bedside Chapter 17–Experiment

 Page 88

• ExperimentDetailsPanel displays the information of the selected
experiment group or experiment in a spreadsheet format. On the click of
experiment name, ExperimentOpenPanel gets invoked.

• ExperimentOpenPanel is the main panel used to display the actual data
in the selected experiment. It has ExperimentStackBox embedded in left
hand side and ExperimentDataCategoryGridPanel embedded in right
hand side.

• ExperimentStackBox is used to display data and the other tools that user
can invoke on the data of the experiment. It contains panels to show the
categories in the experiment. It also contains Filter panel, Visualization
Panel and analytical services panel. On click of link in the data category
tree, the details of selected data category are shown in
ExperimentDataCategoryGridPanel.

• ExperimentDataCategoryGridPanel is the base panel to display actual
data in the experiment in the form of spreadsheet. It also acts as
container for the dynamic tabs that gets added as user performs
visualization and analytical tasks.

Figure 55 Experiment UI model

Following sequence diagram illustrates the flow of events while opening an
experiment.

Design Document: caBench-To-Bedside Chapter 17–Experiment

 Page 89

Figure 56 Flow of event for Open Experiment

Custom Data category
User can filter the data present in the experiment and save that sub set of the
data as a custom data category. When user creates custom category, the current
data present in the ExperimentDataCategoryGridPanel is taken and a new data
list is created. This is distinguished with the other data list by setting its
isCustomDataCategory flag to true. This data list is added is then saved along
with its metadata and actual data. After this it is added into the current
experiment and then UI is updated to reflect the change.

Following sequence diagram illustrates the flow of events while saving the
custom data category.

Design Document: caBench-To-Bedside Chapter 17–Experiment

 Page 90

Figure 57 flow for saving the custom data category

Design Document: caBench-To-Bedside Chapter 18–Charting

 Page 91

Chapter 18 Charting

Overview
The experiment data saved by the user after searching and saving the data list
can be scrutinized either by Analytical services or Visualization tools. Cab2b
chart is one of the options available for visualization. It allows the user to see the
various numerical data graphically by generating various charts out of it.

Classes Involved
cd charts

AbstractChart

+ AbstractChart(Cab2bChartRawData)

+ createChartPanel() : JPanel

createDataset() : Dataset

createChart(Dataset) : JFreeChart

BarChart

StandardCategoryItemLabelGenerator

«static»

BarChart::LabelGenerator

~ LabelGenerator()

+ generateLabel(CategoryDataset, int, int) : String

Cab2bPanel

Cab2bChartPanel

+ Cab2bChartPanel(Cab2bTable)

+ setChartType(ChartType, String) : void

+ setChartType(ChartType) : void

ActionListener

Cab2bChartPanel::

RadioButtonListener

+ RadioButtonListener()

+ actionPerformed(ActionEvent) : void

Cab2bChartRawData

+ Cab2bChartRawData(Cab2bTable, ChartOrientation)

+ getCab2bTable() : Cab2bTable

+ getSelectedColumnsIndices() : int[]

+ getSelectedRowIndices() : int[]

+ getChartOrientation() : ChartOrientation

+ setChartOrientation(ChartOrientation) : void

«enumeration»

ChartType

~ ChartType(String)

+ getType() : String

+ getChartType(String) : ChartType

LineChart

ScatterPlot

-chartType

-chartRawData

#chartRawData

Figure 58 Classes Involved in Charting

Cab2bChartRawData stores the reference to the data table, the indices of the
rows and columns selected in the data table, and the series of the charts (i.e. row
wise or column wise) to be displayed.

ChartType is a wrapper around any of the following three types of charts that
Cab2bChartPanel uses to decide which chart is to be rendered.

• BAR_CHART

• LINE_CHART

Design Document: caBench-To-Bedside Chapter 18–Charting

 Page 92

• SCATTER_PLOT

Cab2bChartPanel displays the requested chart. It also has the options to change
the series of the chart. Cab2bChartPanel:RadioButtonListener acts on the
selected option to change the series of the chart.

AbstractChart is the base class of all the chart classes. It holds the data to be
rendered and provides a functionality that creates the chart panel.

BarChart is the chart class that renders the data to generate the bar chart.

BarChart:LabelGenerator is used by BarChart to generate the labels required in
the chart.

LineChart is the chart class that renders the data to generate the line chart.

ScatterPlot is the chart class that renders the data to generate the scatter plot.

Sequence diagram
sd Sequence Diagram

Cab2bChartPanel

ExperimentStackBox

Client

BarChart

Cab2bPanel JTabbedPane

actionPerformed(ActionEvent)

[currentChartPanel == nul l]:

setChartType(ChartType) new

createChartPanel

add(JPanel)

add(Cab2bChartPanel)

add(Cab2bPanel)

CloseButton:performedAction(ActionEvent)

remove(Cab2bPanel)

Figure 59 Flow of events happening during chart generation

Future functionalities

- Display large chart with scroll bars.
- To limit the legends of the chart to be displayed.

Design Document: caBench-To-Bedside Chapter 19–Spreadsheet Component

 Page 93

Chapter 19 Spreadsheet Component

Overview
This component provides various tool bar menus with excellent graphical
interface.

JSheet: JSheet is the main class of SpreadSheet component and is extended
from JPanel. The class contains references for all components that can be set on
SpreadSheet and some special methods like setAdditionalToolbarActions() which
appends new JButtons in the Toolbar, with the specified actions.

The JSheet class contains following important instance variables which help in
event handling and customization of components.

Class/Variable Name Description

SheetCustomizationConsole The Visual components that accepts User settings:
which Columns to view

ColumnFilterVerticalConsole This panel presents context sensitive Filter Control
for single column. The last selected Column in Data
View is picked up.
This is the visual component that shows applicable
filter as GUI to user, providing chance for correction.

InternalPCListener Sheet Configuration Monitoring

SheetCustomizationModel Sheet Customization (Visibility & Filters) is kept
here.

createSampleValuesFromModel Indicator flag if sample values from filter should be
created from Table Model, or
 filter should be disabled if NOT explicitly
provided.

ColSelectionListener Column Selection Listener class

ViewDataConsole The actual Visual Component that renders table on
the screen for the user

selectionRowMode If this is true, SelectionHanger is allowed to paint
itself as selected, if and only if table cell selected is
true as per model.

ViewDataConsole: Represents data modeling and action event handling for all
visible components set on JSheet. This class contains action listener classes for
all toolbar buttons and also some special methods like public void
removeComponentFromToolBar() which helps in customizing toolbar component
on JSheet.

Design Document: caBench-To-Bedside Chapter 19–Spreadsheet Component

 Page 94

Following are the list of important action listener classes used in
ViewDataConsole class.

Class/Variable Name Description

ShowDetailsAction Action class for ‘Show Details’ button on JSheet tool bar. On
clicking shows details of the selected row.

AddUserColAction Action class for ‘Add Column’ button on JSheet tool bar. It
adds editable user column to JSheet.

CopyAction Action class for ‘Copy’ button on JSheet tool bar. Copy to
clipboard.

ResetAllAction Action class for ‘Reset’button on JSheet tool bar.

SelectAllAction Action class for ‘Select All’ button on JSheet tool bar.

PasteFromClipAction Action class for ‘Paste’ button on JSheet tool bar.

ExportSelectionActio
n

Action class for ‘Export’ button on JSheet tool bar.

ShowCustomizationC
onsoleAction

Action class for ‘Properties’ button on JSheet tool bar.

ClearSelectionAction Action class for ‘Clear’ button on JSheet tool bar.

butToolbarAdditional
AL

List of additional toolbar actions...

CompositeTableModel: This is a data model extended from
AbstractTableModel class and picks data from both Read-Only and Extensible
Data Models. This class contains TableModel for storing the Read only
component of the table data and DefaultTableModel for storing and maintaining
the New Columns of the table data in JSheet.

JSheetViewDataModel: Similar to CompositeTableModel, this is a data model
class extended from AbstractTableModel class and picks data only from visible
columns in table. This model helps in creating Custom data categories and Data
Categories for the selected experiment.

ColumnFilterVerticleConsole: This class extends Panel and is responsible for
Filter component associated with Spreadsheet. It is tightly bounded with its
associated model and uses different action listener classes for different types of
filter components.

Following is the list of important the action listener and data model classes for
different Filter components in SpreadSheet component.

Class/Variable Name Description

ColumnFilterModel Define filter model for all columns from Spreadsheet

ListItemSelectionListener List selection listener class for List type filter

PatternPropertyChangeListener Document change listener class for Pattern type filter

RangeChangeListener Property change listener class for range filter

ColumnFilterModel: This class defines filter data model for all columns in
Spreadsheet. It stores the information about currently applied filter on a particular
column and all required details from column related to filter e.g. max-range, min-
range, pattern-filter string etc. It works only on values that are naturally
comparable and passes value to a particular filter model component e.g. Range
Filter, List filter, Pattern filter etc.

Design Document: caBench-To-Bedside Chapter 19–Spreadsheet Component

 Page 95

SheetCustomizationConsole: This is a user interface class extended from
JPanel class. The class represents all columns’ property page where user can
Reset column settings, add extra Columns, set the column to be visible or
invisible and can view all columns and respective filters in a single page. The
class uses SheetCustomizationModel as data model.

SheetCustomizationModel: Table Model implemented to accept and keep
Column Visibility Settings. Mainly used for handling data model of
SheetCustomizationConsole page.

FiltersViewConsole: This is a main class used to design and handle Filter
component screen associated with JSheet component. The class contains
references for SheetCustomizationModel, ConsolidatedFilterViewTblModel and
ChangeListener classes to identify any changes in data model.

ConsolidatedFilterViewTblModel: This class defines data model for
FilterViewConsole class. The data model collects information from
SheetCustomizationModel class and handles data modeling for
FilterViewConsole UI panel.

Design Document: caBench-To-Bedside Chapter 19–Spreadsheet Component

 Page 96

Class Diagram

Figure 60 Classes Involved in Spreadsheet component

Design Document: caBench-To-Bedside Chapter 20–Analytical Services Invoker

 Page 97

Chapter 20 Analytical Services Invoker

Overview
Analytical services are the services which transform the data from one form to
another by applying some algorithm on it. When a user views records of a
particular entity, analytical services applicable for that entity are shown in left-
hand-side stack box.

Entity to Analytical Service Mapping XML
Finding analytical services for an entity is a metadata driven process Found
using a file EntityToAnalyticalServiceMapping.xml. Figure 61 below shows a
sample of this configuration file.

Figure 61 Sample EntityToAnalyticalServiceMapping.xml

• <entity>: This file has <entity> tag that specifies what feature providesmapping
between entity and its one applicable service. There can be multiple services
applicable for an entity. In this case, there will be those many <entity> tags with
different service names.

• <service>: This file has one <service> tag per service. It has a unique name for
the service which is shown to the user and a URL is provided that points to the
running instance of that service.

• <method> tag in the service states which method of a service is to be invoked.
Attribute serviceDetailsClass presents the class which holds details of the
service. The class mentioned here must implement ServiceDetailsInterface.
There is a method on this interface getRequiredEntities () which returns a list of

Design Document: caBench-To-Bedside Chapter 20–Analytical Services Invoker

 Page 98

entities. One of them will be the one for which user is currently viewing the data.
For other entities a dynamic UI is generated to specify values for its attributes.
Attribute serviceInvokerClass specifies which class to be used to invoke the
service. The class mentioned here must implement ServiceInvokerInterface.

Classes involved
Diagram below shows the classes involved at the backend. It also shows
implementation details for comparative marker selection analytical service.

Figure 56 Classes involved in getting and invoking analytical services

• ServiceDetailsInterface: It defines the methods needed to describe any analytical
service such as its name, required entities, URL pointing to service instance. All
the classes mentioned as value of attribute serviceDetailsClass in above XML file
must implement this interface

• ServiceInvokerInterface: It defines the method to invoke an analytical service. All
the classes mentioned as value of attribute serviceInvokerClass in above XML
file must implement this interface

• EntityToAnalyticalServiceMapper: This is a singleton class which parses the
EntityToAnalyticalServiceMapping.xml file and stores the mapping information
into an internal map. This class provides the methods to get the service interface
and the service invoker interface.

• AnalyticalServiceOperations: This class has a method to get applicable analytical
services which returns a list of ServiceDetailsInterface for a given entity. It also
has method invoke () to call the service with passed data.

• CMSServiceDetails and CMSServiceInvoker are the real extensions
implemented to invoke comparative marker selection analytical service.

Design Document: caBench-To-Bedside Chapter 21–Appendix

 Page 99

Chapter 21 Appendix

Dynamic Extension and MDR

Overview
One of the most important components of the DE project is its metadata
repository. MDR can contain metadata about dynamic extensions or static UML
models. Each DE is also a UML model. The MDR is very important component
not just for DE, but also for applications such as caB2B and caTissue Suite. The
basic backbone of MDR is as shown in Figure 1 Metadata Repository backbone.

Figure 627 Metadata Repository backbone

MDR contains the following metadata for a domain model:

- Classes
- Attributes
- Data type
- Concept codes
- Description
- Permissible values

In case the domain model is created using the dynamic extensions user
interface, the MDR will contain the UI display properties and the database
mapping information for each attribute. The metadata for the user interface
contains:

- Type of UI Control
- Properties like height, width, password like string and so forth
- Mandatory or optional attribute
Table to which the entity maps and column to which the attribute maps

Design Document: caBench-To-Bedside Chapter 21–Appendix

 Page 100

UML Metadata
This contains all the information present in the UML model such as class,
attributes, and associations including the permissible values. Following diagram
shows the classes involved in entity creation along with the relationships involved
in these classes.

Figure 63 Dynamic extension basic metadata

AbstractMetadata: This is an abstract base class from which the backbone
metadata objects are derived. This class contains generic attributes which are
part of all objects (like create date, last updated and so forth).

EntityGroup: An entity group is a logical collection of entities. For example, all
classes of an application are loaded under one entity group. It contains multiple
entities.

Entity: This class represents an UML class. An entity is associated to itself to
specify its parent entity. An entity can have zero or one parent entity. An entity
can also have zero or more children entities.

AbstractAttribute: An entity can either have zero or more primitive attributes, or
have zero or more associated classes. This is represented by the
AbstractAttribute class. It is the base class for Association and Attribute classes.

Attribute: The class represents a primitive attribute. For example, name is an
attribute of the user entity. Attribute can be of following types:

Design Document: caBench-To-Bedside Chapter 21–Appendix

 Page 101

o String attribute
o Double attribute
o Short attribute
o Long attribute
o Boolean Attribute
o Date attribute
o ByteArray (for BLOB/CLOB)

Following diagram shows how attribute type is defined or changed in attribute.

Figure 59 Attribute Type Metadata

Attribute class is associated with the class “AttributeTypeInformation” that
specifies the type of the attribute.

AttributeTypeInformation: This class represents the type of the attribute. Attribute
type can be any of the above mentioned types. This class is an abstract class
which is extended by all the specific primitive attribute types like
DoubleAttributeTypeInformation or StringAttributeTypeInformation.

Role: This class describes an association’s cardinality and the association type.
The class has the following attributes

• associationType: This could be two types of association: containment or
linking. Containment association type is one of Person and Address where
the Person entity will contain Address entity within it. The Address object
does not exist on its own. Linking association type is one of User and
Study. Here, both the objects can be created independently. The user can
be part of multiple studies and a study can contain multiple users.

Design Document: caBench-To-Bedside Chapter 21–Appendix

 Page 102

• maxCardinality: Maximum cardinality of association (for example, 1 or
many)

• minCardinality: Maximum cardinality of association (for example, 0, 1 or
many)

• name: The role name of the association.
Association: This class represents the associations that an entity can have with
other entities. E.g. a User entity is associated with Institute entity.

• sourceRole: This represents the role of the association from the source
context.

• targetRole: This represents the role of the association from the target
context.

Inheritance Metadata support
One of the main aspects of any application is the inheritance between its entities. So
when any object model is loaded into DE database, this hierarchy of objects should
be preserved. This section explains how inheritance is preserved in DE using the
required metadata objects of DE. Following diagram explains the required objects
and relationships for inheritance.

Figure 64 Inheritance Metadata

Entity: Entity object represents the java class in any object model. So to maintain the
hierarchy of classes, following attributes and associations are maintained.

isAbstract: This flag maintains whether the entity is abstract or not.
inheritStrategy: This attribute stores the Hibernate’s strategy to store the actual data
in the actual database. Allowed values for this attribute are:

1. Joined subclass
2. Subclass
3. Table per concrete class.

Attribute data elements and default values
An attribute can have values that are derived from some fixed source or some user
defined set of allowable values. For example, gender attribute can have only fixed
values like male and female. Additionally, the attribute can have one of them as a
default value. This information is saved in following way. The diagram shows the way
in which the allowable and default values are stored in DE

Design Document: caBench-To-Bedside Chapter 21–Appendix

 Page 103

Figure 65 Attribute Data Elements

caDSRDE holds all the common information for all the types of data elements. Some
of the associations of this class are:

• AttributeTypeInformation: Source of the allowable values is specific to the
attribute type. So to represent this information correctly,
AttributeTypeInformation class is associated with the DataElement so that
it represents the type of source for the attribute.

 AbstractValue: This class represents a value, an attribute can have. This value can be used as a
default value or as one of the allowable values. The class acts as a base class for the entire
attribute type specific value.

